首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   7篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2005年   1篇
  1999年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
用常规方法确定岩性油藏含油边界需要一定的井孔资料,导致勘探成本较高,为此引入神经网络方法。先对地震资料进行解释,提取地震特性参数,与已知井的试油结果一起组成神经网络的学习样本集,经训练并绘制测线剖面或平面图,最终确定出含油边界。应用该方法对准噶尔盆地玛北油田二叠系乌尔禾组和三叠系百口泉组油藏进行了含油边界的确定,结果表明,用该方法可以直观地在剖面图上确定油藏的含油边界,这样确定的含油边界能够满足储量计算的要求,且该方法较传统方法有很大的优越性。  相似文献   
2.
Following the Lushan M S7.0 earthquake on 20 April 2013, a topic of much concern is whether events of M S7 or greater could occur again on the southern segment of the Longmenshan fault zone. In providing evidence to answer this question, this work analyzes the tectonic relationship between the Lushan event and the 2008 Wenchuan earthquake and the rupture history of the southern segment of the Longmenshan fault zone, through field investigations of active tectonics and paleoearthquake research, and our preliminary conclusions are as follows. The activity of the southern segment of the Longmenshan fault zone is much different to that of its central section, and the late Quaternary activity has propagated forward to the basin in the east. The seismogenic structure of the 2008 Wenchuan earthquake is the central-fore-range fault system, whereas that of the 2013 Lushan event is attributed to the fore-range-range-front fault system, rather than the central fault. The southern segment of the Longmenshan fault zone becomes wider towards the south with an increasing number of secondary faults, of which the individual faults exhibit much weaker surface activity. Therefore, this section is not as capable of generating a major earthquake as is the central segment. It is most likely that the 2013 earthquake fills the seismic gap around Lushan on the southern segment of the Longmenshan fault zone.  相似文献   
3.
拓展Banerjee和Majhi研究黑洞Hawking辐射的方法,在保持时空中总能量、总电荷和总角动量守恒的条件下,利用新定义的Tortoise坐标变换研究带电旋转黑洞的Hawking辐射.在考虑辐射粒子对时空的反作用后,不但得到满足量子力学幺正性原理的黑洞辐射谱.而且在结果中显示,由带电旋转粒子引起的辐射谱中类似化学势的项,入射波与出射波的贡献是相等的.使人们对黑洞Hawking辐射的物理机理又有了一种新的理解.  相似文献   
4.
High precision elevation measurements using DGPS were carried out along three representative tran-sects for the "Great Ear" area, a dry salt lake within the Lop Nor basin. Results indicate that the Lop Nor basin is only 5.2 m deep and its lowest point occurs at the center of the "Great Ear". In addition, the basin is asymmetric-steeper in the southwest (0.19‰) and gentler in the northeast (0.09‰). Points along the same "Great Ear" ring were found to have an identical elevation value, but different when from different ones (lower towards the center). The spacing of the "Great Ear" rings was found to be closely related with the surface steepness. The closer the "Great Ear" rings are spaced, the steeper the ground surface, and vice versa. These findings support the argument that the "Great Ear" rings are the former shoreline trails left behind by Lop Nor water during the last few episodes of recession towards its total dry up. A comprehensive analysis of the high precision elevation data, historical accounts, aerial and satellite photographs and imagery, and official topographic maps of the study area suggests that the "Great Ear" area in the Lop Nor basin was incorrectly mapped as being covered by a great body of water on the 1963 topographic maps. A re-interpretation of the 1958 aerial photographs and newer remote sensing imagery indicated that the "Great Ear" ring structure was already in place in 1958 and it continued to appear on the subsequent remote sensing data without any major changes. It is estimated that lake water in the "Great Ear" area of the Lop Nor basin disappeared between the late 1930s and early 1940s.  相似文献   
5.
Ran  YongKang  Shi  Xiang  Wang  Hu  Chen  LiChun  Chen  Jie  Liu  RuiChun  Gong  Huiling 《科学通报(英文版)》2010,55(9):841-850
The amount of coseismic deformation and its distribution of the Wenchuan earthquake provide important scientific bases for revealing the mechanisms of earthquake preparation and characterizing the rupture propagation of the Wenchuan earthquake. The previous studies have indicated that the earthquake ruptured the middle-to-north segment of the Longmenshan central fault and the middle segment of the Longmenshan range-front fault, which are characterized by two surface rupture zones of 240 km and 90 km in length, respectively. Based on the pre-earthquake information and photos of landforms and buildings obtained through ge-ologic and geomorphic survey of the area around Shaba Village of Beichuan County, Sichuan Province and the extensive interview with local villagers, we measured the displacements of the major terrain features and the dislocated buildings by total station instruments and differential GPS and obtained the maximum vertical displacement of 9±0.5 m and right-lateral displacement of 2±0.5 m around the Zou’s house in Shaba Village. Though the near-surface deformation exhibits a normal faulting around Shaba Village, the dynamic environment has not changed on the whole. The NW wall of the fault uplifted but without gravity gliding as normally occurring on the hanging wall of a normal fault, which proves that the 9±0.5 m displacement should be the maximum coseismic vertical displacement of the May 12, 2008 Ms 8.0 Wenchuan earthquake.  相似文献   
6.
目的:研究比较两种检测血清ACE的实验方法。方法:对同一血清同时采用酶动力学法与Neels方法进行相关对比。结果:酶动力学法CV:批内37%,批间46%,而对比的Neels方法CV:批内4.0%,批间4.9%。相关系数r=0.981,回归方程Y=1.21X+58。结论:认为酶动力学方法具有简便快捷,重复性好,无需特殊仪器,试剂适于一般临床实验室中广泛开展。  相似文献   
7.
As revealed by field investigations, the co-seismic surface rupture zone of the 2010 MS7.1 Yushu earthquake, Qinghai is a char-acteristic sinistral strike-slip feature consisting of three distinct sinistral primary ruptures, with an overall strike of 310°–320° and a total length of 31 km. In addition, an approximately 2-km-long en-echelon tensile fissure zone was found east of Longbao Town; if this site is taken as the north end of the rupture zone, then the rupture had a total length of ~51 km. The surface rupture zone is composed of a series of fissures arranged in an en-echelon or alternating relationship between compressive bulges and tensile fissures, with a measured maximum horizontal displacement of 1.8 m. The surface rupture zone extends along the mapped Garzê-Yushu Fault, which implicates it as the seismogenic fault for this earthquake. Historically, a few earthquakes with a magnitude of about 7 have occurred along the fault, and additionally traces of paleoearthquakes are evident that characterize the short-period recurrence interval of large earthquakes here. Similar to the seismogenic process of the 2008 Wenchuan earthquake, the Yushu earthquake is also due to the stress accumulation and release on the block boundaries resulting from the eastward expansion of Qinghai-Tibet Plateau. However, in contrast with the Wenchuan earthquake, the Yushu earthquake had a sinistral strike-slip mechanism resulting from the uneven eastward extrusion of the Baryan Har and Sichuan-Yunnan fault blocks.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号