首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
现状及发展   6篇
研究方法   2篇
综合类   15篇
  2017年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1981年   2篇
  1968年   2篇
  1965年   1篇
  1956年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Knoll AH  Butterfield NJ 《Nature》1989,337(6208):602-603
This article briefly discusses the the new fossil assemblage found in the 600-650-million-year-old shales of the Pertatataka formation in central Australia. It includes about two dozen taxa of spinose, process-bearing or otherwise ornamented acritarchs, many of them extremely large relative to comparably ornamented fossils in younger rocks. These acritarchs reveal a glimpse of early evolution and Proterozoic life.  相似文献   
2.
Knoll AH  Hayes JM  Kaufman AJ  Swett K  Lambert IB 《Nature》1986,321(6073):832-838
Analyses of stratigraphically continuous suites of samples from Upper Proterozoic sedimentary successions of East Greenland, Spitsbergen and Nordaustlandet (Svalbard) provide an approximation to the secular variation in carbon isotope ratios during a geologically and biologically important period of change from around 900 million years ago to the beginning of the Cambrian period. Late Riphean carbonates and organic material show a stratigraphically useful pattern of enrichment in 13C relative to Phanerozoic or earlier Proterozoic samples. Isotopic compositions of isolated samples from other localities are consistent with a worldwide extended interval of enhanced organic burial and consequent net survival of oxidized material, probably O2, just before the initial radiation of metazoans.  相似文献   
3.
Knoll AH  Golubic S  Green J  Swett K 《Nature》1986,321(6073):856-857
Diverse microorganisms ranging from cyanobacteria to eukaryotic algae and fungi live endolithically within ooids, hardgrounds and invertebrate shells on the present-day sea floor. These organisms are involved in the mechanical destruction of carbonates, and are useful ecological indicators of water depth and pollution. The Phanerozoic history of microbial endoliths has been elucidated through the study of microborings (the trace fossils of endolithic microorganisms) and rare cellularly preserved individuals, but nothing was known of the possible Precambrian evolution of comparable microorganisms until Campbell documented the occurrence of microborings in late Proterozoic ooids from central East Greenland. We now report the discovery of large populations of organically preserved endolithic microorganisms in silicified pisolites from 700-800-Myr-old Limestone-Dolomite Series of East Greenland. This fossil assemblage is significant for three reasons: (1) It confirms the prediction that oolites, pisolites and hardgrounds--the substrates for pre-Phanerozoic endoliths--provide a hitherto poorly explored but rewarding set of environments into which the search for early microfossils must be broadened; (2) the assemblage is diverse, containing about 12 taxa of morphologically distinct and previously unknown endolithic cyanobacteria, plus associated epilithic and interstitial populations; and (3) at least six of the fossil populations are indistinguishable in morphology, pattern of development, reproductive biology and inferred ecology from distinctive cyanobacterial species that bore ooids today in the Bahama Banks.  相似文献   
4.
这本专著总结了作者多年来最重要的研究成果。研究表明,人的大脑皮层具有获得驱动力的独特能力.正是这种能力创造了人类社会,并促使人类社会不断进化。作者认为,人类社会目前还处于反复实验的发展阶段,但其最终必将由现在的不可知状态逐渐过渡到理性指导的平衡状态。通过对获得性驱动力的特殊分析及以前曾认为不可知的脑机理的发现,作者对社会生活的发展及艺术、科学的起源给出了合理的生理学解释。本书的目的是要论证即使在脑及其自我的关系中,自然规律仍然是简单的,而不是不可知的。  相似文献   
5.
Gill BC  Lyons TW  Young SA  Kump LR  Knoll AH  Saltzman MR 《Nature》2011,469(7328):80-83
Widespread anoxia in the ocean is frequently invoked as a primary driver of mass extinction as well as a long-term inhibitor of evolutionary radiation on early Earth. In recent biogeochemical studies it has been hypothesized that oxygen deficiency was widespread in subsurface water masses of later Cambrian oceans, possibly influencing evolutionary events during this time. Physical evidence of widespread anoxia in Cambrian oceans has remained elusive and thus its potential relationship to the palaeontological record remains largely unexplored. Here we present sulphur isotope records from six globally distributed stratigraphic sections of later Cambrian marine rocks (about 499 million years old). We find a positive sulphur isotope excursion in phase with the Steptoean Positive Carbon Isotope Excursion (SPICE), a large and rapid excursion in the marine carbon isotope record, which is thought to be indicative of a global carbon cycle perturbation. Numerical box modelling of the paired carbon sulphur isotope data indicates that these isotope shifts reflect transient increases in the burial of organic carbon and pyrite sulphur in sediments deposited under large-scale anoxic and sulphidic (euxinic) conditions. Independently, molybdenum abundances in a coeval black shale point convincingly to the transient spread of anoxia. These results identify the SPICE interval as the best characterized ocean anoxic event in the pre-Mesozoic ocean and an extreme example of oxygen deficiency in the later Cambrian ocean. Thus, a redox structure similar to those in Proterozoic oceans may have persisted or returned in the oceans of the early Phanerozoic eon. Indeed, the environmental challenges presented by widespread anoxia may have been a prevalent if not dominant influence on animal evolution in Cambrian oceans.  相似文献   
6.
R D Nicholls  J H Knoll  M G Butler  S Karam  M Lalande 《Nature》1989,342(6247):281-285
Prader-Willi syndrome (PWS) is the most common form of dysmorphic genetic obesity associated with mental retardation. About 60% of cases have a cytological deletion of chromosome 15q11q13 (refs 2, 3). These deletions occur de novo exclusively on the paternal chromosome. By contrast, Angelman syndrome (AS) is a very different clinical disorder and is also associated with deletions of region 15q11q13 (refs 6-8), indistinguishable from those in PWS except that they occur de novo on the maternal chromosome. The parental origin of the affected chromosomes 15 in these disorders could, therefore, be a contributory factor in determining their clinical phenotypes. We have now used cloned DNA markers specific for the 15q11q13 subregion to determine the parental origin of chromosome 15 in PWS individuals not having cytogenetic deletions; these individuals account for almost all of the remaining 40% of PWS cases. Probands in two families displayed maternal uniparental disomy for chromosome 15q11q13. This is the first demonstration that maternal heterodisomy--the presence of two different chromosome 15s derived from the mother--can be associated with a human genetic disease. The absence of a paternal contribution of genes in region 15q11q13, as found in PWS deletion cases, rather than a mutation in a specific gene(s) in this region may result in expression of the clinical phenotype. Thus, we conclude that a gene or genes in region 15q11q13 must be inherited from each parent for normal human development.  相似文献   
7.
8.
9.
Morphological and ecological complexity in early eukaryotic ecosystems.   总被引:18,自引:0,他引:18  
E J Javaux  A H Knoll  M R Walter 《Nature》2001,412(6842):66-69
Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.  相似文献   
10.
Brocks JJ  Love GD  Summons RE  Knoll AH  Logan GA  Bowden SA 《Nature》2005,437(7060):866-870
The disappearance of iron formations from the geological record approximately 1.8 billion years (Gyr) ago was the consequence of rising oxygen levels in the atmosphere starting 2.45-2.32 Gyr ago. It marks the end of a 2.5-Gyr period dominated by anoxic and iron-rich deep oceans. However, despite rising oxygen levels and a concomitant increase in marine sulphate concentration, related to enhanced sulphide oxidation during continental weathering, the chemistry of the oceans in the following mid-Proterozoic interval (approximately 1.8-0.8 Gyr ago) probably did not yet resemble our oxygen-rich modern oceans. Recent data indicate that marine oxygen and sulphate concentrations may have remained well below current levels during this period, with one model indicating that anoxic and sulphidic marine basins were widespread, and perhaps even globally distributed. Here we present hydrocarbon biomarkers (molecular fossils) from a 1.64-Gyr-old basin in northern Australia, revealing the ecological structure of mid-Proterozoic marine communities. The biomarkers signify a marine basin with anoxic, sulphidic, sulphate-poor and permanently stratified deep waters, hostile to eukaryotic algae. Phototrophic purple sulphur bacteria (Chromatiaceae) were detected in the geological record based on the new carotenoid biomarker okenane, and they seem to have co-existed with communities of green sulphur bacteria (Chlorobiaceae). Collectively, the biomarkers support mounting evidence for a long-lasting Proterozoic world in which oxygen levels remained well below modern levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号