首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
教育与普及   1篇
综合类   3篇
  2021年   1篇
  2003年   1篇
  2001年   1篇
  1989年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The phase of the macroscopic electron-pair wavefunction in a superconductor can vary only by multiples of 2pi when going around a closed contour. This results in quantization of magnetic flux, one of the most striking demonstrations of quantum phase coherence in superconductors. By using superconductors with unconventional pairing symmetry, or by incorporating pi-Josephson junctions, a phase shift of pi can be introduced in such loops. Under appropriate conditions, this phase shift results in doubly degenerate time-reversed ground states, which are characterized by the spontaneous generation of half quanta of magnetic flux, with magnitude 1/2 Phi(0)(Phi(0) = h/2e = 2.07 x 10(-15) Wb) (ref. 7). Until now, it has only been possible to generate individual half flux quanta. Here we report the realization of large-scale coupled pi-loop arrays based on YBa2Cu3O7-Au-Nb Josephson contacts. Scanning SQUID (superconducting quantum interference device) microscopy has been used to study the ordering of half flux quanta in these structures. The possibility of manipulating the polarities of individual half flux quanta is also demonstrated. These pi-loop arrays are of interest as model systems for studying magnetic phenomena--including frustration effects--in Ising antiferromagnets. Furthermore, studies of coupled pi-loops can be useful for designing quantum computers based on flux-qubits with viable quantum error correction capabilities.  相似文献   
2.
The iron-chalcogenide high temperature superconductor Fe(Se,Te) (FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which ...  相似文献   
3.
4.
There is a long-standing debate about whether spin-charge separation is the root cause of the peculiar normal-state properties and high superconducting transition temperatures of the high-Tc materials. In the proposed state of matter, the elementary excitations are not electron-like, as in conventional metals, but rather the electron 'fractionalizes' to give excitations that are chargeless spin-1/2 fermions (spinons) and charge +e bosons (chargons). Although spin-charge separation has been well established in one dimension, the theoretical situation for two dimensions is controversial and experimental evidence for it in the high-Tc materials is indirect. A model with sharp experimental tests for a particular type of separation in two dimensions has recently been proposed. Here we report the results of those experimental tests, placing a conservative upper limit of 190 K on the energy of the proposed topological defects known as visons. There is still debate about the extent to which this experiment can settle the issue of spin-charge separation in the high-Tc copper oxides, because some forms of the separation are able to avoid the need for visons. But at least one class of theories that all predict a vortex-memory effect now are unlikely models for the copper oxides.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号