首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2012年   1篇
  2006年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.  相似文献   
2.
Yoshikuni Y  Ferrin TE  Keasling JD 《Nature》2006,440(7087):1078-1082
It is generally believed that proteins with promiscuous functions divergently evolved to acquire higher specificity and activity, and that this process was highly dependent on the ability of proteins to alter their functions with a small number of amino acid substitutions (plasticity). The application of this theory of divergent molecular evolution to promiscuous enzymes may allow us to design enzymes with more specificity and higher activity. Many structural and biochemical analyses have identified the active or binding site residues important for functional plasticity (plasticity residues). To understand how these residues contribute to molecular evolution, and thereby formulate a design methodology, plasticity residues were probed in the active site of the promiscuous sesquiterpene synthase gamma-humulene synthase. Identified plasticity residues were systematically recombined based on a mathematical model in order to construct novel terpene synthases, each catalysing the synthesis of one or a few very different sesquiterpenes. Here we present the construction of seven specific and active synthases that use different reaction pathways to produce the specific and very different products. Creation of these enzymes demonstrates the feasibility of exploiting the underlying evolvability of this scaffold, and provides evidence that rational approaches based on these ideas are useful for enzyme design.  相似文献   
3.
Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号