首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
教育与普及   1篇
现状及发展   1篇
综合类   2篇
自然研究   1篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2003年   1篇
  1989年   1篇
排序方式: 共有5条查询结果,搜索用时 93 毫秒
1
1.
Managing a rare species can be improved with knowledge of its natural history. The sheepnose (Plethobasus cyphyus) is a freshwater mussel recently listed by the US as federally endangered. We used standard methods to study P. cyphyus brooding behaviour, host fishes in the laboratory and under natural conditions, and glochidial morphology. We monitored a population of P. cyphyus in the Chippewa River, WI during spring and summer 2007–2009 and 2011 and found brooding animals between mid-May and early August. Gravid individuals ranged between 5 and 27 yr (mean age ± 1 s.d. = 13 ± 4 yr). Plethobasus cyphyus brooded glochidia in outer gills, which varied in colour from red, orange, pink, cream, or white. We observed mature glochidia more commonly in individuals with cream or white gills and these glochidia were released in a clear, adhesive, mucus matrix. In laboratory trials we found several minnow and topminnow species (29 spp.) served as productive suitable native hosts. The mean number of juvenile mussels released per cyprinid per day was significantly higher for trials conducted at 22–25°C compared with those at 18–20°C, and 83% of trials conducted at 18–20°C using suitable host species produced no juveniles. Glochidia had a unique outline and shell morphometrics that distinguished P. cyphyus from seven other Chippewa River mussel species that produce similar sized glochidia. Using morphometrics we determined that mimic shiners (Notropis volucellus) were natural hosts for P. cyphyus, round pigtoe (Pleurobema sintoxia), and Wabash pigtoe (Fusconaia flava). Releasing mucus-bound glochidia has evolved in a variety of mussel species and may be more common than is currently realized. Our data show that P. cyphyus is a cyprinid host specialist, and propagation efforts for this species can be strengthened through improved access to mature glochidia by using females with cream-coloured gills and increased juvenile production through warmer fish holding temperatures.  相似文献   
2.
The pattern of blood flow in the developing heart has long been proposed to play a significant role in cardiac morphogenesis. In response to flow-induced forces, cultured cardiac endothelial cells rearrange their cytoskeletal structure and change their gene expression profiles. To link such in vitro data to the intact heart, we performed quantitative in vivo analyses of intracardiac flow forces in zebrafish embryos. Using in vivo imaging, here we show the presence of high-shear, vortical flow at two key stages in the developing heart, and predict flow-induced forces much greater than might have been expected for micro-scale structures at low Reynolds numbers. To test the relevance of these shear forces in vivo, flow was occluded at either the cardiac inflow or outflow tracts, resulting in hearts with an abnormal third chamber, diminished looping and impaired valve formation. The similarity of these defects to those observed in some congenital heart diseases argues for the importance of intracardiac haemodynamics as a key epigenetic factor in embryonic cardiogenesis.  相似文献   
3.
4.
5.
Even though the etiology of Alzheimer’s disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号