首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
现状及发展   1篇
综合类   4篇
  2012年   2篇
  2011年   1篇
  2006年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development.  相似文献   
2.
3.
Xenoturbellida and Acoelomorpha are marine worms with contentious ancestry. Both were originally associated with the flatworms (Platyhelminthes), but molecular data have revised their phylogenetic positions, generally linking Xenoturbellida to the deuterostomes and positioning the Acoelomorpha as the most basally branching bilaterian group(s). Recent phylogenomic data suggested that Xenoturbellida and Acoelomorpha are sister taxa and together constitute an early branch of Bilateria. Here we assemble three independent data sets-mitochondrial genes, a phylogenomic data set of 38,330 amino-acid positions and new microRNA (miRNA) complements-and show that the position of Acoelomorpha is strongly affected by a long-branch attraction (LBA) artefact. When we minimize LBA we find consistent support for a position of both acoelomorphs and Xenoturbella within the deuterostomes. The most likely phylogeny links Xenoturbella and Acoelomorpha in a clade we call Xenacoelomorpha. The Xenacoelomorpha is the sister group of the Ambulacraria (hemichordates and echinoderms). We show that analyses of miRNA complements have been affected by character loss in the acoels and that both groups possess one miRNA and the gene Rsb66 otherwise specific to deuterostomes. In addition, Xenoturbella shares one miRNA with the ambulacrarians, and two with the acoels. This phylogeny makes sense of the shared characteristics of Xenoturbellida and Acoelomorpha, such as ciliary ultrastructure and diffuse nervous system, and implies the loss of various deuterostome characters in the Xenacoelomorpha including coelomic cavities, through gut and gill slits.  相似文献   
4.
Delsuc F  Brinkmann H  Chourrout D  Philippe H 《Nature》2006,439(7079):965-968
Tunicates or urochordates (appendicularians, salps and sea squirts), cephalochordates (lancelets) and vertebrates (including lamprey and hagfish) constitute the three extant groups of chordate animals. Traditionally, cephalochordates are considered as the closest living relatives of vertebrates, with tunicates representing the earliest chordate lineage. This view is mainly justified by overall morphological similarities and an apparently increased complexity in cephalochordates and vertebrates relative to tunicates. Despite their critical importance for understanding the origins of vertebrates, phylogenetic studies of chordate relationships have provided equivocal results. Taking advantage of the genome sequencing of the appendicularian Oikopleura dioica, we assembled a phylogenomic data set of 146 nuclear genes (33,800 unambiguously aligned amino acids) from 14 deuterostomes and 24 other slowly evolving species as an outgroup. Here we show that phylogenetic analyses of this data set provide compelling evidence that tunicates, and not cephalochordates, represent the closest living relatives of vertebrates. Chordate monophyly remains uncertain because cephalochordates, albeit with a non-significant statistical support, surprisingly grouped with echinoderms, a hypothesis that needs to be tested with additional data. This new phylogenetic scheme prompts a reappraisal of both morphological and palaeontological data and has important implications for the interpretation of developmental and genomic studies in which tunicates and cephalochordates are used as model animals.  相似文献   
5.
植物能够吸收或降解污染物来修复受污染的土壤和水体[1-2],还能固定土壤、泥沙防止侵蚀和污染物从固体介质中释放[3]。众多无机和有机污染物都能被对其有耐性且生物量大的植物有效降解。例如,凤眼莲能吸收和净化来自金矿采掘废水的氰化物,这类废水含各种氰化物以及重金属元素的浓度达到导致生物体产生毒性效应的水平。检测表明氰化物对凤眼莲的半数致死剂量(LC50)为13 mg/L,将经过高浓度氰化物废水驯化后的凤眼莲放在野外小型湿地进行试验,结果显示这类植物对氰化物的降解效率更高。放射性同位素试验发现氰化物分子中的C和N原子经过植物代谢合成天冬酰胺,从而将有毒性的氰化物转化为无毒的产物[4]。尾矿场也可以用植物来修复,一方面植物可以过滤污染物浓度很高的渗滤液,另一方面栽种植物可以固定边坡减少侵蚀。将高覆盖度植被的概念应用在一个尾矿场上,通过种植北美黄杉使其全年都维持较高的蒸腾效率来减少渗滤液。而边坡的固定首先需要在坡面安置固定、菱形的新鲜柳条编织成的笼状网格,其后覆上土壤并喷播能在生长期对固定土壤发挥作用的草本、灌木以及树木种子。这项技术同样适用于河岸侵蚀防护。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号