首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
现状及发展   1篇
综合类   5篇
  2015年   1篇
  2011年   1篇
  2000年   3篇
  1972年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Delaying the onset of Huntington's in mice   总被引:14,自引:0,他引:14  
van Dellen A  Blakemore C  Deacon R  York D  Hannan AJ 《Nature》2000,404(6779):721-722
  相似文献   
2.
Human induced pluripotent stem cells (iPSCs) represent a unique opportunity for regenerative medicine because they offer the prospect of generating unlimited quantities of cells for autologous transplantation, with potential application in treatments for a broad range of disorders. However, the use of human iPSCs in the context of genetically inherited human disease will require the correction of disease-causing mutations in a manner that is fully compatible with clinical applications. The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome. Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of human iPSCs. Here we show that a combination of zinc finger nucleases (ZFNs) and piggyBac technology in human iPSCs can achieve biallelic correction of a point mutation (Glu342Lys) in the α(1)-antitrypsin (A1AT, also known as SERPINA1) gene that is responsible for α(1)-antitrypsin deficiency. Genetic correction of human iPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene-targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle, to our knowledge, for the potential of combining human iPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies.  相似文献   
3.
在大型多项目交叉的建设工程施工电梯运输管理中,资源进度计划或随时间推进的资源分配,是一个复杂而需要解决的问题.结合建设工程仿真的发展,提出基于拍卖协议仿真模型的资源进度管理,建立基于Agent仿真的施工电梯运输管理系统.通过对该系统的应用,在复杂动态的环境下,可以获得资源进度计划,预测运输活动完成时间节点,计算完成活动消耗的成本,并且从运输活动工作包的逾期及其存储、电梯的闲置等多角度提高施工电梯运输管理的综合能力.  相似文献   
4.
Résumé Isolement de mutants résistants à lap-fluorophenylalanine et son analyse chezSchizophyllum communis.

This is a part of the Ph. D. work carried at the Department of Botany, Queen Mary College, London University, and the author wishes to express here grateful appreciation to ProfessorE. A. Bevan for his guidance in this study.  相似文献   
5.
The ability to cool and slow atoms with light for subsequent trapping allows investigations of the properties and interactions of the trapped atoms in unprecedented detail. By contrast, the complex structure of molecules prohibits this type of manipulation, but magnetic trapping of calcium hydride molecules thermalized in ultra-cold buffer gas and optical trapping of caesium dimers generated from ultra-cold caesium atoms have been reported. However, these methods depend on the target molecules being paramagnetic or able to form through the association of atoms amenable to laser cooling, respectively, thus restricting the range of species that can be studied. Here we describe the slowing of an adiabatically cooled beam of deuterated ammonia molecules by time-varying inhomogeneous electric fields and subsequent loading into an electrostatic trap. We are able to trap state-selected ammonia molecules with a density of 10(6) cm(-3) in a volume of 0.25 cm3 at temperatures below 0.35 K. We observe pronounced density oscillations caused by the rapid switching of the electric fields during loading of the trap. Our findings illustrate that polar molecules can be efficiently cooled and trapped, thus providing an opportunity to study collisions and collective quantum effects in a wide range of ultra-cold molecular systems.  相似文献   
6.
Guo HF  Tong J  Hannan F  Luo L  Zhong Y 《Nature》2000,403(6772):895-898
The tumour-suppressor gene Neurofibromatosis 1 (Nf1) encodes a Ras-specific GTPase activating protein (Ras-GAP). In addition to being involved in tumour formation, NF1 has been reported to cause learning defects in humans and Nf1 knockout mice. However, it remains to be determined whether the observed learning defect is secondary to abnormal development. The Drosophila NF1 protein is highly conserved, showing 60% identity of its 2,803 amino acids with human NF1 (ref. 12). Previous studies have suggested that Drosophila NF1 acts not only as a Ras-GAP but also as a possible regulator of the cAMP pathway that involves the rutabaga (rut)-encoded adenylyl cyclase. Because rut was isolated as a learning and short-term memory mutant, we have pursued the hypothesis that NF1 may affect learning through its control of the Rut-adenylyl cyclase/cAMP pathway. Here we show that NF1 affects learning and short-term memory independently of its developmental effects. We show that G-protein-activated adenylyl cyclase activity consists of NF1-independent and NF1-dependent components, and that the mechanism of the NF1-dependent activation of the Rut-adenylyl cyclase pathway is essential for mediating Drosophila learning and memory.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号