首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Fibre-optical features of a glass sponge   总被引:1,自引:0,他引:1  
Sundar VC  Yablon AD  Grazul JL  Ilan M  Aizenberg J 《Nature》2003,424(6951):899-900
  相似文献   
2.
Ohtomo A  Muller DA  Grazul JL  Hwang HY 《Nature》2002,419(6905):378-380
The nature and length scales of charge screening in complex oxides are fundamental to a wide range of systems, spanning ceramic voltage-dependent resistors (varistors), oxide tunnel junctions and charge ordering in mixed-valence compounds. There are wide variations in the degree of charge disproportionation, length scale, and orientation in the mixed-valence compounds: these have been the subject of intense theoretical study, but little is known about the microscopic electronic structure. Here we have fabricated an idealized structure to examine these issues by growing atomically abrupt layers of LaTi(3+)O(3) embedded in SrTi(4+)O(3). Using an atomic-scale electron beam, we have observed the spatial distribution of the extra electron on the titanium sites. This distribution results in metallic conductivity, even though the superlattice structure is based on two insulators. Despite the chemical abruptness of the interfaces, we find that a minimum thickness of five LaTiO(3) layers is required for the centre titanium site to recover bulk-like electronic properties. This represents a framework within which the short-length-scale electronic response can be probed and incorporated in thin-film oxide heterostructures.  相似文献   
3.
Voyles PM  Muller DA  Grazul JL  Citrin PH  Gossmann HJ 《Nature》2002,416(6883):826-829
As silicon-based transistors in integrated circuits grow smaller, the concentration of charge carriers generated by the introduction of impurity dopant atoms must steadily increase. Current technology, however, is rapidly approaching the limit at which introducing additional dopant atoms ceases to generate additional charge carriers because the dopants form electrically inactive clusters. Using annular dark-field scanning transmission electron microscopy, we report the direct, atomic-resolution observation of individual antimony (Sb) dopant atoms in crystalline Si, and identify the Sb clusters responsible for the saturation of charge carriers. The size, structure, and distribution of these clusters are determined with a Sb-atom detection efficiency of almost 100%. Although single heavy atoms on surfaces or supporting films have been visualized previously, our technique permits the imaging of individual dopants and clusters as they exist within actual devices.  相似文献   
4.
Muller DA  Nakagawa N  Ohtomo A  Grazul JL  Hwang HY 《Nature》2004,430(7000):657-661
At the heart of modern oxide chemistry lies the recognition that beneficial (as well as deleterious) materials properties can be obtained by deliberate deviations of oxygen atom occupancy from the ideal stoichiometry. Conversely, the capability to control and confine oxygen vacancies will be important to realize the full potential of perovskite ferroelectric materials, varistors and field-effect devices. In transition metal oxides, oxygen vacancies are generally electron donors, and in strontium titanate (SrTiO3) thin films, oxygen vacancies (unlike impurity dopants) are particularly important because they tend to retain high carrier mobilities, even at high carrier densities. Here we report the successful fabrication, using a pulsed laser deposition technique, of SrTiO3 superlattice films with oxygen doping profiles that exhibit subnanometre abruptness. We profile the vacancy concentrations on an atomic scale using annular-dark-field electron microscopy and core-level spectroscopy, and demonstrate absolute detection sensitivities of one to four oxygen vacancies. Our findings open a pathway to the microscopic study of individual vacancies and their clustering, not only in oxides, but in crystalline materials more generally.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号