首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   7篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Ganel T  Goodale MA 《Nature》2003,426(6967):664-667
The visual perception of object shape depends on 'holistic' processing in which a given dimension cannot be perceptually isolated from the other dimensions of the object. The visual control of action (such as grasping an object), however, which is mediated by cortical areas that are largely independent of those mediating conscious perception, must take into account only the most action-relevant dimension of an object without being misled by other non-relevant object features. Here we report the results of two experiments showing that vision for perception and vision for action deal with objects in a fundamentally different manner. We tested participants' ability to make perceptual judgements of the width of different rectangular objects or to grasp them across their width, while in both cases ignoring length. Participants could not ignore length when making perceptual judgements of width but they could completely ignore length when grasping the same objects. These results suggest that in situations in which the elementary dimensions of an object's shape are perceived in a holistic manner, the same dimensions are treated analytically when a visually guided action is directed at that same object.  相似文献   
2.
A neurological dissociation between perceiving objects and grasping them   总被引:25,自引:0,他引:25  
M A Goodale  A D Milner  L S Jakobson  D P Carey 《Nature》1991,349(6305):154-156
Studies of the visual capacity of neurological patients have provided evidence for a dissociation between the perceptual report of a visual stimulus and the ability to direct spatially accurate movements toward that stimulus. Some patients with damage to the parietal lobe, for example, are unable to reach accurately towards visual targets that they unequivocally report seeing. Conversely, some patients with extensive damage to primary visual cortex can make accurate pointing movements or saccades toward a stimulus presented in their 'blind' scotoma. But in investigations of visuomotor control in patients with visual disorders, little consideration has been given to complex acts such as manual prehension. Grasping a three-dimensional object requires knowledge not only of the object's spatial location, but also of its form, orientation and size. We have examined a patient with a profound disorder in the perception of such object qualities. Our quantitative analyses demonstrate strikingly accurate guidance of hand and finger movements directed at the very objects whose qualities she fails to perceive. These data suggest that the neural substrates for the visual perception of object qualities such as shape, orientation and size are distinct from those underlying the use of those qualities in the control of manual skills.  相似文献   
3.
Uncertain sinks in the shrubs   总被引:12,自引:0,他引:12  
Goodale CL  Davidson EA 《Nature》2002,418(6898):593-594
  相似文献   
4.
Whitney D  Westwood DA  Goodale MA 《Nature》2003,423(6942):869-873
One of the most important functions of vision is to direct actions to objects. However, every time that vision is used to guide an action, retinal motion signals are produced by the movement of the eye and head as the person looks at the object or by the motion of other objects in the scene. To reach for the object accurately, the visuomotor system must separate information about the position of the stationary target from background retinal motion signals-a long-standing problem that is poorly understood. Here we show that the visuomotor system does not distinguish between these two information sources: when observers made fast reaching movements to a briefly presented stationary target, their hand shifted in a direction consistent with the motion of a distant and unrelated stimulus, a result contrary to most other findings. This can be seen early in the hand's trajectory (approximately 120 ms) and occurs continuously from programming of the movement through to its execution. The visuomotor system might make use of the motion signals arising from eye and head movements to update the positions of targets rapidly and redirect the hand to compensate for body movements.  相似文献   
5.
6.
Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems.   总被引:95,自引:0,他引:95  
Knowledge of carbon exchange between the atmosphere, land and the oceans is important, given that the terrestrial and marine environments are currently absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion. This carbon uptake is therefore limiting the extent of atmospheric and climatic change, but its long-term nature remains uncertain. Here we provide an overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems. Atmospheric carbon dioxide and oxygen data confirm that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s. This recent sink can be largely attributed to northern extratropical areas, and is roughly split between North America and Eurasia. Tropical land areas, however, were approximately in balance with respect to carbon exchange, implying a carbon sink that offset emissions due to tropical deforestation. The evolution of the terrestrial carbon sink is largely the result of changes in land use over time, such as regrowth on abandoned agricultural land and fire prevention, in addition to responses to environmental changes, such as longer growing seasons, and fertilization by carbon dioxide and nitrogen. Nevertheless, there remain considerable uncertainties as to the magnitude of the sink in different regions and the contribution of different processes.  相似文献   
7.
M A Goodale  D Pelisson  C Prablanc 《Nature》1986,320(6064):748-750
When we reach towards an object that suddenly appears in our peripheral visual field, not only does our arm extend towards the object, but our eyes, head and body also move in such a way that the image of the object falls on the fovea. Popular models of how reaching movements are programmed have argued that while the first part of the limb movement is ballistic, subsequent corrections to the trajectory are made on the basis of dynamic feedback about the relative positions of the hand and the target provided by central vision. These models have assumed that the adjustments are dependent on seeing the hand moving with respect to the target. Here we present evidence that a change in the position of a visual target during a reaching movement can modify the trajectory even when vision of the hand is prevented. Moreover, these dynamic corrections to the trajectory of the moving limb occur without the subject perceiving the change in target location. These findings demonstrate that visual feedback about the relative position of the hand and target is not necessary for visually driven corrections in reaching to occur, and the mechanisms that maintain the apparent stability of a target in space are dissociable from those that mediate the visuomotor output directed at that target.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号