首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The chemical composition of the Bannock basin has been studied in some detail. We recently showed that unusual microbial populations, including a new division of Archaea (MSBL1), inhabit the NaCl-rich hypersaline brine. High salinities tend to reduce biodiversity, but when brines come into contact with fresher water the natural haloclines formed frequently contain gradients of other chemicals, including permutations of electron donors and acceptors, that may enhance microbial diversity, activity and biogeochemical cycling. Here we report a 2.5-m-thick chemocline with a steep NaCl gradient at 3.3 km within the water column betweeen Bannock anoxic hypersaline brine and overlying sea water. The chemocline supports some of the most biomass-rich and active microbial communities in the deep sea, dominated by Bacteria rather than Archaea, and including four major new divisions of Bacteria. Significantly higher metabolic activities were measured in the chemocline than in the overlying sea water and underlying brine; functional analyses indicate that a range of biological processes is likely to occur in the chemocline. Many prokaryotic taxa, including the phylogenetically new groups, were confined to defined salinities, and collectively formed a diverse, sharply stratified, deep-sea ecosystem with sufficient biomass to potentially contribute to organic geological deposits.  相似文献   
2.
Ferroplasma is a genus of the Archaea, one of the three branches of the tree of life, and belongs to the order Thermoplasmatales (Euryarchaeota), which contains the most acidophilic microbes yet known. Ferroplasma species live in acid mine drainage, acidic pools and environments containing sulphidic ores such as pyrite and characterized by pH values of 0-2 and high concentrations of ferrous iron and other heavy metals. F. acidiphilum strain Y(T) is a chemoautotroph that grows optimally at pH 1.7 and gains energy by oxidizing ferrous iron and carbon by the fixation of carbon dioxide. Here we show that 86% of 189 investigated cellular proteins of F. acidiphilum are iron-metalloproteins. These include proteins with deduced structural, chaperone and catalytic roles, not described as iron-metalloproteins in any other organism so far investigated. The iron atoms in the proteins seem to organize and stabilize their three-dimensional structures, to act as 'iron rivets'. Analysis of proteins of the phylogenetic neighbour Picrophilus torridus and of the habitat neighbour Acidithiobacillus ferrooxidans revealed far fewer and only typical metalloproteins. F. acidiphilum therefore has a currently unique iron-protein-dominated cellular machinery and biochemical phylogeny.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号