首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2012年   1篇
  2006年   1篇
  1977年   1篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
Extracellular plaques of amyloid-β and intraneuronal neurofibrillary tangles made from tau are the histopathological signatures of Alzheimer's disease. Plaques comprise amyloid-β fibrils that assemble from monomeric and oligomeric intermediates, and are prognostic indicators of Alzheimer's disease. Despite the importance of plaques to Alzheimer's disease, oligomers are considered to be the principal toxic forms of amyloid-β. Interestingly, many adverse responses to amyloid-β, such as cytotoxicity, microtubule loss, impaired memory and learning, and neuritic degeneration, are greatly amplified by tau expression. Amino-terminally truncated, pyroglutamylated (pE) forms of amyloid-β are strongly associated with Alzheimer's disease, are more toxic than amyloid-β, residues 1-42 (Aβ(1-42)) and Aβ(1-40), and have been proposed as initiators of Alzheimer's disease pathogenesis. Here we report a mechanism by which pE-Aβ may trigger Alzheimer's disease. Aβ(3(pE)-42) co-oligomerizes with excess Aβ(1-42) to form metastable low-n oligomers (LNOs) that are structurally distinct and far more cytotoxic to cultured neurons than comparable LNOs made from Aβ(1-42) alone. Tau is required for cytotoxicity, and LNOs comprising 5% Aβ(3(pE)-42) plus 95% Aβ(1-42) (5% pE-Aβ) seed new cytotoxic LNOs through multiple serial dilutions into Aβ(1-42) monomers in the absence of additional Aβ(3(pE)-42). LNOs isolated from human Alzheimer's disease brain contained Aβ(3(pE)-42), and enhanced Aβ(3(pE)-42) formation in mice triggered neuron loss and gliosis at 3 months, but not in a tau-null background. We conclude that Aβ(3(pE)-42) confers tau-dependent neuronal death and causes template-induced misfolding of Aβ(1-42) into structurally distinct LNOs that propagate by a prion-like mechanism. Our results raise the possibility that Aβ(3(pE)-42) acts similarly at a primary step in Alzheimer's disease pathogenesis.  相似文献   
2.
C G Glabe  V D Vacquier 《Nature》1977,267(5614):836-838
  相似文献   
3.
A specific amyloid-beta protein assembly in the brain impairs memory   总被引:4,自引:0,他引:4  
Lesné S  Koh MT  Kotilinek L  Kayed R  Glabe CG  Yang A  Gallagher M  Ashe KH 《Nature》2006,440(7082):352-357
Memory function often declines with age, and is believed to deteriorate initially because of changes in synaptic function rather than loss of neurons. Some individuals then go on to develop Alzheimer's disease with neurodegeneration. Here we use Tg2576 mice, which express a human amyloid-beta precursor protein (APP) variant linked to Alzheimer's disease, to investigate the cause of memory decline in the absence of neurodegeneration or amyloid-beta protein amyloidosis. Young Tg2576 mice (< 6 months old) have normal memory and lack neuropathology, middle-aged mice (6-14 months old) develop memory deficits without neuronal loss, and old mice (> 14 months old) form abundant neuritic plaques containing amyloid-beta (refs 3-6). We found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-beta assembly, which we term Abeta*56 (Abeta star 56). Abeta*56 purified from the brains of impaired Tg2576 mice disrupts memory when administered to young rats. We propose that Abeta*56 impairs memory independently of plaques or neuronal loss, and may contribute to cognitive deficits associated with Alzheimer's disease.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号