首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
现状及发展   5篇
研究方法   1篇
综合类   18篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有24条查询结果,搜索用时 46 毫秒
1.
The ability to discriminate between different chemical stimuli is crucial for food detection, spatial orientation and other adaptive behaviours in animals. In the nematode Caenorhabditis elegans, spatial orientation in gradients of soluble chemoattractants (chemotaxis) is controlled mainly by a single pair of chemosensory neurons. These two neurons, ASEL and ASER, are left-right homologues in terms of the disposition of their somata and processes, morphology of specialized sensory endings, synaptic partners and expression profile of many genes. However, recent gene-expression studies have revealed unexpected asymmetries between ASEL and ASER. ASEL expresses the putative receptor guanylyl cyclase genes gcy-6 and gcy-7, whereas ASER expresses gcy-5 (ref. 4). In addition, only ASEL expresses the homeobox gene lim-6, an orthologue of the human LMX1 subfamily of homeobox genes. Here we show, using laser ablation of neurons and whole-cell patch-clamp electrophysiology, that the asymmetries between ASEL and ASER extend to the functional level. ASEL is primarily sensitive to sodium, whereas ASER is primarily sensitive to chloride and potassium. Furthermore, we find that lim-6 is required for this functional asymmetry and for the ability to distinguish sodium from chloride. Thus, a homeobox gene increases the representational capacity of the nervous system by establishing asymmetric functions in a bilaterally symmetrical neuron pair.  相似文献   
2.
Global patterns in biodiversity   总被引:114,自引:0,他引:114  
Gaston KJ 《Nature》2000,405(6783):220-227
To a first approximation, the distribution of biodiversity across the Earth can be described in terms of a relatively small number of broad-scale spatial patterns. Although these patterns are increasingly well documented, understanding why they exist constitutes one of the most significant intellectual challenges to ecologists and biogeographers. Theory is, however, developing rapidly, improving in its internal consistency, and more readily subjected to empirical challenge.  相似文献   
3.
4.
In the context of historical climate records of China and early meteorological measurements of Beijing discovered recently in Europe, a study is undertaken on the 1743 hottest summer of north China over the last 700 a, covering Beijing, Tianjin, and the provinces of Hebei, Shanxi and Shandong, with the highest temperature reaching 44.4℃ in July 1743 in Beijing, in excess of the maximum climate record in the 20th century. Results show that the related weather/climate features of the 1743 heat wave, e.g., flood/drought distribution and Meiyu activity and the external forcings, such as solar activity and equatorial Pacific SST condition are the same as those of the 1942 and 1999 heat events. It is noted that the 1743 burning summer event occurs in a relatively warm climate background prior to the Industrial Revolution, with a lower level of CO2 release.  相似文献   
5.
6.
7.
8.
9.
10.
S-nitrosothiols signal the ventilatory response to hypoxia   总被引:8,自引:0,他引:8  
Increased ventilation in response to hypoxia has been appreciated for over a century, but the biochemistry underlying this response remains poorly understood. Here we define a pathway in which increased minute ventilation (&Vdot;E ) is signalled by deoxyhaemoglobin-derived S-nitrosothiols (SNOs). Specifically, we demonstrate that S-nitrosocysteinyl glycine (CGSNO) and S-nitroso-l-cysteine (l-CSNO)-but not S-nitroso-d-cysteine (d-CSNO)-reproduce the ventilatory effects of hypoxia at the level of the nucleus tractus solitarius (NTS). We show that plasma from deoxygenated, but not from oxygenated, blood produces the ventilatory effect of both SNOs and hypoxia. Further, this activity is mediated by S-nitrosoglutathione (GSNO), and GSNO activation by gamma-glutamyl transpeptidase (gamma-GT) is required. The normal response to hypoxia is impaired in a knockout mouse lacking gamma-GT. These observations suggest that S-nitrosothiol biochemistry is of central importance to the regulation of breathing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号