首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
现状及发展   2篇
综合类   4篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2008年   1篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
This paper motivates and outlines a new account of scientific explanation, which I term ‘collaborative explanation.’ My approach is pluralist: I do not claim that all scientific explanations are collaborative, but only that some important scientific explanations are—notably those of complex organic processes like development. Collaborative explanation is closely related to what philosophers of biology term ‘mechanistic explanation’ (e.g., Machamer et al., Craver, 2007). I begin with minimal conditions for mechanisms: complexity, causality, and multilevel structure. Different accounts of mechanistic explanation interpret and prioritize these conditions in different ways. This framework reveals two distinct varieties of mechanistic explanation: causal and constitutive. The two have heretofore been conflated, with philosophical discussion focusing on the former. This paper addresses the imbalance, using a case study of modeling practices in Systems Biology to reveals key features of constitutive mechanistic explanation. I then propose an analysis of this variety of mechanistic explanation, in terms of collaborative concepts, and sketch the outlines of a general theory of collaborative explanation. I conclude with some reflections on the connection between this variety of explanation and social aspects of scientific practice.  相似文献   
2.
River networks, seen as ecological corridors featuring connected and hierarchical dendritic landscapes for animals and plants, present unique challenges and opportunities for testing biogeographical theories and macroecological laws. Although local and basin-scale differences in riverine fish diversity have been analysed as functions of energy availability and habitat heterogeneity, scale-dependent environmental conditions and river discharge, a model that predicts a comprehensive set of system-wide diversity patterns has been hard to find. Here we show that fish diversity patterns throughout the Mississippi-Missouri River System are well described by a neutral metacommunity model coupled with an appropriate habitat capacity distribution and dispersal kernel. River network structure acts as an effective template for characterizing spatial attributes of fish biodiversity. We show that estimates of average dispersal behaviour and habitat capacities, objectively calculated from average runoff production, yield reliable predictions of large-scale spatial biodiversity patterns in riverine systems. The success of the neutral theory in two-dimensional forest ecosystems and here in dendritic riverine ecosystems suggests the possible application of neutral metacommunity models in a diverse suite of ecosystems. This framework offers direct linkage from large-scale forcing, such as global climate change, to biodiversity patterns.  相似文献   
3.
利用非对称拉普拉斯分布提出一种新的混合分位数回归模型. 传统模型仅考虑位置参数, 而所提出模型同时考虑了位置参数和尺度参数, 并利用期望最大化(expectation maximization, EM)算法对模型参数进行估计. 数值分析结果表明, 参数估计的精度在各个 分位 数上均较为理想, 并且估计精度随着样本量的增加而提高. 最后运用所提出模 型及其算法对城市房价数据进行分析.  相似文献   
4.
Nutritional constraints in terrestrial and freshwater food webs   总被引:85,自引:0,他引:85  
Biological and environmental contrasts between aquatic and terrestrial systems have hindered analyses of community and ecosystem structure across Earth's diverse habitats. Ecological stoichiometry provides an integrative approach for such analyses, as all organisms are composed of the same major elements (C, N, P) whose balance affects production, nutrient cycling, and food-web dynamics. Here we show both similarities and differences in the C:N:P ratios of primary producers (autotrophs) and invertebrate primary consumers (herbivores) across habitats. Terrestrial food webs are built on an extremely nutrient-poor autotroph base with C:P and C:N ratios higher than in lake particulate matter, although the N:P ratios are nearly identical. Terrestrial herbivores (insects) and their freshwater counterparts (zooplankton) are nutrient-rich and indistinguishable in C:N:P stoichiometry. In both lakes and terrestrial systems, herbivores should have low growth efficiencies (10-30%) when consuming autotrophs with typical carbon-to-nutrient ratios. These stoichiometric constraints on herbivore growth appear to be qualitatively similar and widespread in both environments.  相似文献   
5.
The earliest anatomically modern humans in Europe are thought to have appeared around 43,000-42,000 calendar years before present (43-42 kyr cal BP), by association with Aurignacian sites and lithic assemblages assumed to have been made by modern humans rather than by Neanderthals. However, the actual physical evidence for modern humans is extremely rare, and direct dates reach no farther back than about 41-39 kyr cal BP, leaving a gap. Here we show, using stratigraphic, chronological and archaeological data, that a fragment of human maxilla from the Kent's Cavern site, UK, dates to the earlier period. The maxilla (KC4), which was excavated in 1927, was initially diagnosed as Upper Palaeolithic modern human. In 1989, it was directly radiocarbon dated by accelerator mass spectrometry to 36.4-34.7 kyr cal BP. Using a Bayesian analysis of new ultrafiltered bone collagen dates in an ordered stratigraphic sequence at the site, we show that this date is a considerable underestimate. Instead, KC4 dates to 44.2-41.5 kyr cal BP. This makes it older than any other equivalently dated modern human specimen and directly contemporary with the latest European Neanderthals, thus making its taxonomic attribution crucial. We also show that in 13 dental traits KC4 possesses modern human rather than Neanderthal characteristics; three other traits show Neanderthal affinities and a further seven are ambiguous. KC4 therefore represents the oldest known anatomically modern human fossil in northwestern Europe, fills a key gap between the earliest dated Aurignacian remains and the earliest human skeletal remains, and demonstrates the wide and rapid dispersal of early modern humans across Europe more than 40 kyr ago.  相似文献   
6.
Model organisms are at once scientific models and concrete living things. It is widely assumed by philosophers of science that (1) model organisms function much like other kinds of models, and (2) that insofar as their scientific role is distinctive, it is in virtue of representing a wide range of biological species and providing a basis for generalizations about those targets. This paper uses the case of human embryonic stem cells (hESC) to challenge both assumptions. I first argue that hESC can be considered model organisms, analogous to classic examples such as Escherichia coli and Drosophila melanogaster. I then discuss four contrasts between the epistemic role of hESC in practice, and the assumptions about model organisms noted above. These contrasts motivate an alternative view of model organisms as a network of systems related constructively and developmentally to one another. I conclude by relating this result to other accounts of model organisms in recent philosophy of science.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号