首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
理论与方法论   1篇
研究方法   4篇
综合类   10篇
  2019年   1篇
  2015年   1篇
  2012年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  1970年   1篇
排序方式: 共有15条查询结果,搜索用时 216 毫秒
1.
The recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways plays a key role in the generation of amyloid beta peptide (Abeta) in Alzheimer disease. We report here that inherited variants in the SORL1 neuronal sorting receptor are associated with late-onset Alzheimer disease. These variants, which occur in at least two different clusters of intronic sequences within the SORL1 gene (also known as LR11 or SORLA) may regulate tissue-specific expression of SORL1. We also show that SORL1 directs trafficking of APP into recycling pathways and that when SORL1 is underexpressed, APP is sorted into Abeta-generating compartments. These data suggest that inherited or acquired changes in SORL1 expression or function are mechanistically involved in causing Alzheimer disease.  相似文献   
2.
The presenilin proteins (PS1 and PS2) and their interacting partners nicastrin, aph-1 (refs 4, 5) and pen-2 (ref. 5) form a series of high-molecular-mass, membrane-bound protein complexes that are necessary for gamma-secretase and epsilon-secretase cleavage of selected type 1 transmembrane proteins, including the amyloid precursor protein, Notch and cadherins. Modest cleavage activity can be generated by reconstituting these four proteins in yeast and Spodoptera frugiperda (sf9) cells. However, a critical but unanswered question about the biology of the presenilin complexes is how their activity is modulated in terms of substrate specificity and/or relative activities at the gamma and epsilon sites. A corollary to this question is whether additional proteins in the presenilin complexes might subsume these putative regulatory functions. The hypothesis that additional proteins might exist in the presenilin complexes is supported by the fact that enzymatically active complexes have a mass that is much greater than predicted for a 1:1:1:1 stoichiometric complex (at least 650 kDa observed, compared with about 220 kDa predicted). To address these questions we undertook a search for presenilin-interacting proteins that differentially affected gamma- and epsilon-site cleavage events. Here we report that TMP21, a member of the p24 cargo protein family, is a component of presenilin complexes and differentially regulates gamma-secretase cleavage without affecting epsilon-secretase activity.  相似文献   
3.
Morphogen gradients contribute to pattern formation by determining positional information in morphogenetic fields. Interpretation of positional information is thought to rely on direct, concentration-threshold-dependent mechanisms for establishing multiple differential domains of target gene expression. In Drosophila, maternal gradients establish the initial position of boundaries for zygotic gap gene expression, which in turn convey positional information to pair-rule and segment-polarity genes, the latter forming a segmental pre-pattern by the onset of gastrulation. Here we report, on the basis of quantitative gene expression data, substantial anterior shifts in the position of gap domains after their initial establishment. Using a data-driven mathematical modelling approach, we show that these shifts are based on a regulatory mechanism that relies on asymmetric gap-gap cross-repression and does not require the diffusion of gap proteins. Our analysis implies that the threshold-dependent interpretation of maternal morphogen concentration is not sufficient to determine shifting gap domain boundary positions, and suggests that establishing and interpreting positional information are not independent processes in the Drosophila blastoderm.  相似文献   
4.
Congruent findings from studies of fear learning in animals and humans indicate that research on the circuits mediating fear constitutes our best hope of understanding human anxiety disorders. In mammals, repeated presentations of a conditioned stimulus that was previously paired to a noxious stimulus leads to the gradual disappearance of conditioned fear responses. Although much evidence suggests that this extinction process depends on plastic events in the amygdala, the underlying mechanisms remain unclear. Intercalated (ITC) amygdala neurons constitute probable mediators of extinction because they receive information about the conditioned stimulus from the basolateral amygdala (BLA), and contribute inhibitory projections to the central nucleus (CEA), the main output station of the amygdala for conditioned fear responses. Thus, after extinction training, ITC cells could reduce the impact of conditioned-stimulus-related BLA inputs to the CEA by means of feed-forward inhibition. Here we test the hypothesis that ITC neurons mediate extinction by lesioning them with a toxin that selectively targets cells expressing micro-opioid receptors (microORs). Electron microscopic observations revealed that the incidence of microOR-immunoreactive synapses is much higher in ITC cell clusters than in the BLA or CEA and that microORs typically have a post-synaptic location in ITC cells. In keeping with this, bilateral infusions of the microOR agonist dermorphin conjugated to the toxin saporin in the vicinity of ITC neurons caused a 34% reduction in the number of ITC cells but no significant cell loss in surrounding nuclei. Moreover, ITC lesions caused a marked deficit in the expression of extinction that correlated negatively with the number of surviving ITC neurons but not CEA cells. Because ITC cells exhibit an unusual pattern of receptor expression, these findings open new avenues for the treatment of anxiety disorders.  相似文献   
5.
6.
S-layers are regular two-dimensional semipermeable protein layers that constitute a major cell-wall component in archaea and many bacteria. The nanoscale repeat structure of the S-layer lattices and their self-assembly from S-layer proteins (SLPs) have sparked interest in their use as patterning and display scaffolds for a range of nano-biotechnological applications. Despite their biological abundance and the technological interest in them, structural information about SLPs is limited to truncated and assembly-negative proteins. Here we report the X-ray structure of the SbsB SLP of Geobacillus stearothermophilus PV72/p2 by the use of nanobody-aided crystallization. SbsB consists of a seven-domain protein, formed by an amino-terminal cell-wall attachment domain and six consecutive immunoglobulin-like domains, that organize into a φ-shaped disk-like monomeric crystallization unit stabilized by interdomain Ca(2+) ion coordination. A Ca(2+)-dependent switch to the condensed SbsB quaternary structure pre-positions intermolecular contact zones and renders the protein competent for S-layer assembly. On the basis of crystal packing, chemical crosslinking data and cryo-electron microscopy projections, we present a model for the molecular organization of this SLP into a porous protein sheet inside the S-layer. The SbsB lattice represents a previously undescribed structural model for protein assemblies and may advance our understanding of SLP physiology and self-assembly, as well as the rational design of engineered higher-order structures for biotechnology.  相似文献   
7.
8.
Korobkova E  Emonet T  Vilar JM  Shimizu TS  Cluzel P 《Nature》2004,428(6982):574-578
The chemotaxis network that governs the motion of Escherichia coli has long been studied to gain a general understanding of signal transduction. Although this pathway is composed of just a few components, it exhibits some essential characteristics of biological complexity, such as adaptation and response to environmental signals. In studying intracellular networks, most experiments and mathematical models have assumed that network properties can be inferred from population measurements. However, this approach masks underlying temporal fluctuations of intracellular signalling events. We have inferred fundamental properties of the chemotaxis network from a noise analysis of behavioural variations in individual bacteria. Here we show that certain properties established by population measurements, such as adapted states, are not conserved at the single-cell level: for timescales ranging from seconds to several minutes, the behaviour of non-stimulated cells exhibit temporal variations much larger than the expected statistical fluctuations. We find that the signalling network itself causes this noise and identify the molecular events that produce it. Small changes in the concentration of one key network component suppress temporal behavioural variability, suggesting that such variability is a selected property of this adaptive system.  相似文献   
9.
The defect microstructure of the samples manufactured from Ti-6Al-4V powder was studied using electron beam melting (EBM) in the beam current range of 17 - 13 mA. The hybrid digital complex combined positron lifetime spectroscopy and coincidence Doppler broadening spectroscopy was used to characterize the defect structure of the materials. The microstructure and defects were also analyzed by transmission electron microscopy. It has been established that the main type of the defects in the EBM manufactured samples is dislocations. According to the conducted measurements and calculations, the dislocation density in the EBM manufactured samples exceeds by two orders the similar value for the cast Ti-6Al-4Valloy. Formation of Ti-Ti-Al nanoscale clusters has been found in the EBM manufactured samples.  相似文献   
10.
Microtubules (MTs) are important components of the eukaryotic cytoskeleton: they contribute to cell shape and movement, as well as to the motions of organelles including mitotic chromosomes. MTs bind motor enzymes that drive many such movements, but MT dynamics can also contribute to organelle motility. Each MT polymer is a store of chemical energy that can be used to do mechanical work, but how this energy is converted to motility remains unknown. Here we show, by conjugating glass microbeads to tubulin polymers through strong inert linkages, such as biotin-avidin, that depolymerizing MTs exert a brief tug on the beads, as measured with laser tweezers. Analysis of these interactions with a molecular-mechanical model of MT structure and force production shows that a single depolymerizing MT can generate about ten times the force that is developed by a motor enzyme; thus, this mechanism might be the primary driving force for chromosome motion. Because even the simple coupler used here slows MT disassembly, physiological couplers may modulate MT dynamics in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号