首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
研究方法   1篇
综合类   1篇
  2001年   2篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Parallel adaptive radiations in two major clades of placental mammals   总被引:53,自引:0,他引:53  
Higher level relationships among placental mammals, as well as the historical biogeography and morphological diversification of this group, remain unclear. Here we analyse independent molecular data sets, having aligned lengths of DNA of 5,708 and 2,947 base pairs, respectively, for all orders of placental mammals. Phylogenetic analyses resolve placental orders into four groups: Xenarthra, Afrotheria, Laurasiatheria, and Euarchonta plus Glires. The first three groups are consistently monophyletic with different methods of analysis. Euarchonta plus Glires is monophyletic or paraphyletic depending on the phylogenetic method. A unique nine-base-pair deletion in exon 11 of the BRCA1 gene provides additional support for the monophyly of Afrotheria, which includes proboscideans, sirenians, hyracoids, tubulidentates, macroscelideans, chrysochlorids and tenrecids. Laurasiatheria contains cetartiodactyls, perissodactyls, carnivores, pangolins, bats and eulipotyphlan insectivores. Parallel adaptive radiations have occurred within Laurasiatheria and Afrotheria. In each group, there are aquatic, ungulate and insectivore-like forms.  相似文献   
2.
Universal trees based on large combined protein sequence data sets.   总被引:22,自引:0,他引:22  
Universal trees of life based on small-subunit (SSU) ribosomal RNA (rRNA) support the separate mono/holophyly of the domains Archaea (archaebacteria), Bacteria (eubacteria) and Eucarya (eukaryotes) and the placement of extreme thermophiles at the base of the Bacteria. The concept of universal tree reconstruction recently has been upset by protein trees that show intermixing of species from different domains. Such tree topologies have been attributed to either extensive horizontal gene transfer or degradation of phylogenetic signals because of saturation for amino acid substitutions. Here we use large combined alignments of 23 orthologous proteins conserved across 45 species from all domains to construct highly robust universal trees. Although individual protein trees are variable in their support of domain integrity, trees based on combined protein data sets strongly support separate monophyletic domains. Within the Bacteria, we placed spirochaetes as the earliest derived bacterial group. However, elimination from the combined protein alignment of nine protein data sets, which were likely candidates for horizontal gene transfer, resulted in trees showing thermophiles as the earliest evolved bacterial lineage. Thus, combined protein universal trees are highly congruent with SSU rRNA trees in their strong support for the separate monophyly of domains as well as the early evolution of thermophilic Bacteria.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号