首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
研究方法   3篇
综合类   5篇
  2012年   1篇
  2011年   1篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Deletions of muscle mitochondrial DNA (mtDNA) have recently been found in patients with mitochondrial myopathy. However, as most of the described cases were sporadic, and individual deletions involved different portions of mtDNA, the mechanism(s) producing the molecular lesions, as well as their mode of transmission, remain unclear. By studying families with mtDNA heteroplasmy, valuable information can be obtained about the role of inheritable factors in the pathogenesis of these disorders. We have studied four members of a family with autosomal dominant mitochondrial myopathy. Multiple deletions, involving the same portion of muscle mtDNA, were identified in all patients. Sequence analysis of the mutant mtDNAs, performed after DNA amplification by the polymerase-chain reaction showed that all the deletions start within a 12-nucleotide stretch at the 5' end of the D-loop region, a site of active communication between the nucleus and the mtDNA. The data indicate that a mutation of a nuclear-coded protein can destroy the integrity of the mitochondrial genome in a specific, heritable way.  相似文献   
2.
Establishing the structure of molecules and solids has always had an essential role in physics, chemistry and biology. The methods of choice are X-ray and electron diffraction, which are routinely used to determine atomic positions with sub-?ngstr?m spatial resolution. Although both methods are currently limited to probing dynamics on timescales longer than a picosecond, the recent development of femtosecond sources of X-ray pulses and electron beams suggests that they might soon be capable of taking ultrafast snapshots of biological molecules and condensed-phase systems undergoing structural changes. The past decade has also witnessed the emergence of an alternative imaging approach based on laser-ionized bursts of coherent electron wave packets that self-interrogate the parent molecular structure. Here we show that this phenomenon can indeed be exploited for laser-induced electron diffraction (LIED), to image molecular structures with sub-?ngstr?m precision and exposure times of a few femtoseconds. We apply the method to oxygen and nitrogen molecules, which on strong-field ionization at three mid-infrared wavelengths (1.7, 2.0 and 2.3?μm) emit photoelectrons with a momentum distribution from which we extract diffraction patterns. The long wavelength is essential for achieving atomic-scale spatial resolution, and the wavelength variation is equivalent to taking snapshots at different times. We show that the method has the sensitivity to measure a 0.1?? displacement in the oxygen bond length occurring in a time interval of ~5?fs, which establishes LIED as a promising approach for the imaging of gas-phase molecules with unprecedented spatio-temporal resolution.  相似文献   
3.
4.
Large-scale deletions of mitochondrial DNA (mtDNA) are associated with a subgroup of mitochondrial encephalomyopathies. We studied seven patients with Kearns-Sayre syndrome or isolated ocular myopathy who harboured a sub-population of partially-deleted mitochondrial genomes in skeletal muscle. Variable cytochrome c oxidase (COX) deficiencies and reduction of mitochondrially-encoded polypeptides were found in affected muscle fibres, but while many COX-deficient fibres had increased levels of mutant mtDNA, they almost invariably had reduced levels of normal mtDNA. Our results suggest that a specific ratio between mutant and wild-type mitochondrial genomes is the most important determinant of a focal respiratory chain deficiency, even though absolute copy numbers may vary widely.  相似文献   
5.
DiMauro LF 《Nature》2002,419(6909):789-790
  相似文献   
6.
The mitochondrial (mt) DNA depletion syndromes (MDDS) are genetic disorders characterized by a severe, tissue-specific decrease of mtDNA copy number, leading to organ failure. There are two main clinical presentations: myopathic (OMIM 609560) and hepatocerebral (OMIM 251880). Known mutant genes, including TK2, SUCLA2, DGUOK and POLG, account for only a fraction of MDDS cases. We found a new locus for hepatocerebral MDDS on chromosome 2p21-23 and prioritized the genes on this locus using a new integrative genomics strategy. One of the top-scoring candidates was the human ortholog of the mouse kidney disease gene Mpv17. We found disease-segregating mutations in three families with hepatocerebral MDDS and demonstrated that, contrary to the alleged peroxisomal localization of the MPV17 gene product, MPV17 is a mitochondrial inner membrane protein, and its absence or malfunction causes oxidative phosphorylation (OXPHOS) failure and mtDNA depletion, not only in affected individuals but also in Mpv17-/- mice.  相似文献   
7.
Mammalian cytochrome c oxidase (COX) catalyses the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane. Mitochondrial DNA (mtDNA) encodes three COX subunits (I-III) and nuclear DNA (nDNA) encodes ten. In addition, ancillary proteins are required for the correct assembly and function of COX (refs 2, 3, 4, 5, 6). Although pathogenic mutations in mtDNA-encoded COX subunits have been described, no mutations in the nDNA-encoded subunits have been uncovered in any mendelian-inherited COX deficiency disorder. In yeast, two related COX assembly genes, SCO1 and SCO2 (for synthesis of cytochrome c oxidase), enable subunits I and II to be incorporated into the holoprotein. Here we have identified mutations in the human homologue, SCO2, in three unrelated infants with a newly recognized fatal cardioencephalomyopathy and COX deficiency. Immunohistochemical studies implied that the enzymatic deficiency, which was most severe in cardiac and skeletal muscle, was due to the loss of mtDNA-encoded COX subunits. The clinical phenotype caused by mutations in human SCO2 differs from that caused by mutations in SURF1, the only other known COX assembly gene associated with a human disease, Leigh syndrome.  相似文献   
8.
"Lysosomal glycogen storage disease with normal acid maltase" which was originally described by Danon et al., is characterized clinically by cardiomyopathy, myopathy and variable mental retardation. The pathological hallmark of the disease is intracytoplasmic vacuoles containing autophagic material and glycogen in skeletal and cardiac muscle cells. Sarcolemmal proteins and basal lamina are associated with the vacuolar membranes. Here we report ten unrelated patients, including one of the patients from the original case report, who have primary deficiencies of LAMP-2, a principal lysosomal membrane protein. From these results and the finding that LAMP-2-deficient mice manifest a similar vacuolar cardioskeletal myopathy, we conclude that primary LAMP-2 deficiency is the cause of Danon disease. To our knowledge this is the first example of human cardiopathy-myopathy that is caused by mutations in a lysosomal structural protein rather than an enzymatic protein.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号