首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2006年   1篇
  1999年   1篇
  1970年   1篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.
2.
Ascaris haemoglobin is a nitric oxide-activated 'deoxygenase'.   总被引:5,自引:0,他引:5  
The parasitic nematode Ascaris lumbricoides infects one billion people worldwide. Its perienteric fluid contains an octameric haemoglobin that binds oxygen nearly 25,000 times more tightly than does human haemoglobin. Despite numerous investigations, the biological function of this molecule has remained elusive. The distal haem pocket contains a metal, oxygen and thiol, all of which are known to be reactive with nitric oxide. Here we show that Ascaris haemoglobin enzymatically consumes oxygen in a reaction driven by nitric oxide, thus keeping the perienteric fluid hypoxic. The mechanism of this reaction involves unprecedented chemistry of a haem group, a thiol and nitric oxide. We propose that Ascaris haemoglobin functions as a 'deoxygenase', using nitric oxide to detoxify oxygen. The structural and functional adaptations of Ascaris haemoglobin suggest that the molecular evolution of haemoglobin can be rationalized by its nitric oxide related functions.  相似文献   
3.
Bao S  Wu Q  McLendon RE  Hao Y  Shi Q  Hjelmeland AB  Dewhirst MW  Bigner DD  Rich JN 《Nature》2006,444(7120):756-760
Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. The fraction of tumour cells expressing CD133 (Prominin-1), a marker for both neural stem cells and brain cancer stem cells, is enriched after radiation in gliomas. In both cell culture and the brains of immunocompromised mice, CD133-expressing glioma cells survive ionizing radiation in increased proportions relative to most tumour cells, which lack CD133. CD133-expressing tumour cells isolated from both human glioma xenografts and primary patient glioblastoma specimens preferentially activate the DNA damage checkpoint in response to radiation, and repair radiation-induced DNA damage more effectively than CD133-negative tumour cells. In addition, the radioresistance of CD133-positive glioma stem cells can be reversed with a specific inhibitor of the Chk1 and Chk2 checkpoint kinases. Our results suggest that CD133-positive tumour cells represent the cellular population that confers glioma radioresistance and could be the source of tumour recurrence after radiation. Targeting DNA damage checkpoint response in cancer stem cells may overcome this radioresistance and provide a therapeutic model for malignant brain cancers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号