首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
理论与方法论   1篇
研究方法   3篇
综合类   4篇
自然研究   1篇
  2011年   2篇
  2006年   1篇
  2001年   1篇
  1999年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
A radiation hybrid map of mouse genes   总被引:13,自引:0,他引:13  
A comprehensive gene-based map of a genome is a powerful tool for genetic studies and is especially useful for the positional cloning and positional candidate approaches. The availability of gene maps for multiple organisms provides the foundation for detailed conserved-orthology maps showing the correspondence between conserved genomic segments. These maps make it possible to use cross-species information in gene hunts and shed light on the evolutionary forces that shape the genome. Here we report a radiation hybrid map of mouse genes, a combined project of the Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, the Medical Research Council UK Mouse Genome Centre, and the National Center for Biotechnology Information. The map contains 11,109 genes, screened against the T31 RH panel and positioned relative to a reference map containing 2,280 mouse genetic markers. It includes 3,658 genes homologous to the human genome sequence and provides a framework for overlaying the human genome sequence to the mouse and for sequencing the mouse genome.  相似文献   
2.
L H Breimer  P Denny 《Nature》1987,326(6115):749-750
  相似文献   
3.
4.
A YAC-based physical map of the mouse genome.   总被引:9,自引:0,他引:9  
A physical map of the mouse genome is an essential tool for both positional cloning and genomic sequencing in this key model system for biomedical research. Indeed, the construction of a mouse physical map with markers spaced at an average interval of 300 kb is one of the stated goals of the Human Genome Project. Here we report the results of a project at the Whitehead Institute/MIT Center for Genome Research to construct such a physical map of the mouse. We built the map by screening sequenced-tagged sites (STSs) against a large-insert yeast artificial chromosome (YAC) library and then integrating the STS-content information with a dense genetic map. The integrated map shows the location of 9,787 loci, providing landmarks with an average spacing of approximately 300 kb and affording YAC coverage of approximately 92% of the mouse genome. We also report the results of a project at the MRC UK Mouse Genome Centre targeted at chromosome X. The project produced a YAC-based map containing 619 loci (with 121 loci in common with the Whitehead map and 498 additional loci), providing especially dense coverage of this sex chromosome. The YAC-based physical map directly facilitates positional cloning of mouse mutations by providing ready access to most of the genome. More generally, use of this map in addition to a newly constructed radiation hybrid (RH) map provides a comprehensive framework for mouse genomic studies.  相似文献   
5.
The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt's lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, the MYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations.  相似文献   
6.
Given two dendrograms (rooted tree diagrams) which have some but not all of their base points in common, a supertree is a dendrogram from which each of the original trees can be regarded as samples The distinction is made between inconsistent and consistent sample trees, defined by whether or not the samples provide contradictory information about the supertree An algorithm for obtaining the strict consensus supertree of two consistent sample trees is presented, as are procedures for merging two inconsistent sample trees Some suggestions for future work are made  相似文献   
7.
C T Denny  Y Yoshikai  T W Mak  S D Smith  G F Hollis  I R Kirsch 《Nature》1986,320(6062):549-551
Specific chromosomal aberrations are associated with specific types of cancer (for review see ref. 1). The distinctiveness of each association has led to the belief that these chromosomal aberrations are clues to oncogenic events or to the state of differentiation in the malignant cell type. Malignancies of T lymphocytes demonstrate such an association characterized most frequently by structural translocations or inversions of chromosomes 7 and 14 (refs 7-9). Analyses of these chromosomally marked tumours at the molecular level may therefore provide insight into the aetiology of the cancers as well as the mechanisms by which chromosomes break and rejoin. Here we report such an analysis of the tumour cell line SUP-T1 derived from a patient with childhood T-cell lymphoma carrying an inversion of one chromosome 14 between bands q11.2 and q32.3, that is, inv(14) (q11.2; q32.2). These are the same chromosomal bands to which the T-cell receptor alpha-chain (14q11.2) and the immunoglobulin heavy-chain locus (14q32.3) have been assigned. Our analysis reveals that this morphological inversion of chromosome 14 was mediated by a site-specific recombination event between an immunoglobulin heavy-chain variable region (Ig VH) and a T-cell receptor (TCR) alpha-chain joining segment (TCR J alpha). S1 nuclease analysis shows that this hybrid gene is transcribed into poly(A)+ RNA.  相似文献   
8.
X-linked dominant disorders that are exclusively lethal prenatally in hemizygous males have been described in human and mouse. None of the genes responsible has been isolated in either species. The bare patches (Bpa) and striated (Str) mouse mutations were originally identified in female offspring of X-irradiated males. Subsequently, additional independent alleles were described. We have previously mapped these X-linked dominant, male-lethal mutations to an overlapping region of 600 kb that is homologous to human Xq28 (ref. 4) and identified several candidate genes in this interval. Here we report mutations in one of these genes, Nsdhl, encoding an NAD(P)H steroid dehydrogenase-like protein, in two independent Bpa and three independent Str alleles. Quantitative analysis of sterols from tissues of affected Bpa mice support a role for Nsdhl in cholesterol biosynthesis. Our results demonstrate that Bpa and Str are allelic mutations and identify the first mammalian locus associated with an X-linked dominant, male-lethal phenotype. They also expand the spectrum of phenotypes associated with abnormalities of cholesterol metabolism.  相似文献   
9.
Our main objective was to improve understanding of herbicide effects on community dynamics to refine the use of technology and advance the development of ecologically based weed management strategies. We hypothesized that native grasslands would exhibit reductions in culturally sensitive forb cover, biomass, and density relative to the rate of application of selective rangeland herbicides, and that hand-removal of sulfur cinquefoil ( Potentilla recta L.) would increase indigenous species cover, biomass, density, species richness, and diversity. Treatments consisted of 3 rates each of 2,4-D + clopyralid (0.28 kg ai ? ha -1 + 0.0532 kg ai ? ha -1 , 0.56 kg ai ? ha -1 + 0.1064 kg ai ? ha -1 , 0.84 kg ai ? ha -1 + 0.1596 kg ai ? ha -1 ); 2,4-D amine (0.532 kg ai ? ha -1 , 1.064 kg ai ? ha -1 , 1.596 kg ai ? ha -1 ); metsulfuron (0.0042 kg ai ? ha -1 , 0.021 kg ai ? ha -1 , 0.032 kg ai ? ha -1 ); picloram (0.14 kg ai ? ha -1 , 0.28 kg ai ? ha -1 , 0.56 kg ai ? ha -1 ); and clopyralid (0.05025 kg ai ? ha -1 , 0.21 kg ai ? ha -1 , 0.42 kg ai ? ha -1 ). This experiment was replicated 3 times at 2 lateseral, noninfested sites in southeastern Montana. In a companion study, sulfur cinquefoil was removed adjacent to paired nonremoved controls in 5 replicates at 2 sites in 1-m 2 plots for 2 growing seasons. Canopy cover, density, and biomass were collected 24 months after initial treatment at all sites. Indigenous perennial grass cover and biomass increased with herbicide application; however, picloram, metsulfuron, and clopyralid reduced native forb density at 1 site, and picloram reduced forb cover at both sites regardless of rate. Effects of herbicides on species richness or diversity were not detected. Hand-removing sulfur cinquefoil increased total plant richness, especially that of native forbs. Restoring species richness and diversity may be difficult using selective broadleaf herbicides because key functional groups, such as forbs, appear to be at risk.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号