首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
研究方法   1篇
综合类   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Detection of regulatory variation in mouse genes   总被引:23,自引:0,他引:23  
Functional polymorphism in genes can be classified as coding variation, altering the amino-acid sequence of the encoded protein, or regulatory variation, affecting the level or pattern of expression of the gene. Coding variation can be recognized directly from DNA sequence, and consequently its frequency and characteristics have been extensively described. By contrast, virtually nothing is known about the extent to which gene regulation varies in populations. Yet it is likely that regulatory variants are important in modulating gene function: alterations in gene regulation have been proposed to influence disease susceptibility and to have been the primary substrate for the evolution of species. Here, we report a systematic study to assess the extent of cis-acting regulatory variation in 69 genes across four inbred mouse strains. We find that at least four of these genes show allelic differences in expression level of 1.5-fold or greater, and that some of these differences are tissue specific. The results show that the impact of regulatory variants can be detected at a significant frequency in a genomic survey and suggest that such variation may have important consequences for organismal phenotype and evolution. The results indicate that larger-scale surveys in both mouse and human could identify a substantial number of genes with common regulatory variation.  相似文献   
2.
Most genomic variation is attributable to single nucleotide polymorphisms (SNPs), which therefore offer the highest resolution for tracking disease genes and population history. It has been proposed that a dense map of 30,000-500,000 SNPs can be used to scan the human genome for haplotypes associated with common diseases. Here we describe a simple but powerful method, called reduced representation shotgun (RRS) sequencing, for creating SNP maps. RRS re-samples specific subsets of the genome from several individuals, and compares the resulting sequences using a highly accurate SNP detection algorithm. The method can be extended by alignment to available genome sequence, increasing the yield of SNPs and providing map positions. These methods are being used by The SNP Consortium, an international collaboration of academic centres, pharmaceutical companies and a private foundation, to discover and release at least 300,000 human SNPs. We have discovered 47,172 human SNPs by RRS, and in total the Consortium has identified 148,459 SNPs. More broadly, RRS facilitates the rapid, inexpensive construction of SNP maps in biomedically and agriculturally important species. SNPs discovered by RRS also offer unique advantages for large-scale genotyping.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号