首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
现状及发展   2篇
综合类   1篇
  2012年   1篇
  2002年   1篇
  1957年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Despite being relatively insensitive to environmental insult, the spore is responsive to low concentrations of chemical germinants, which induce germination. The process of bacterial spore germination involves membrane permeability changes, ion fluxes and the activation of enzymes that degrade the outer layers of the spore. A number of components in the spore that are required for the germination response have been identified, including a spore-specific family of receptor proteins (the GerA family), an ion transporter and cortex lytic enzymes. The germinant traverses the outer layers of the spore and interacts with its receptor in the inner membrane to initiate the cascade of germination events, but the molecular details of this signal transduction process remain to be identified.  相似文献   
2.
Wilson GP  Evans AR  Corfe IJ  Smits PD  Fortelius M  Jernvall J 《Nature》2012,483(7390):457-460
The Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous-Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous-Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous-Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous-Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.  相似文献   
3.
Zusammenfassung Raupen vonSmerinthus ocellata L. im dritten bis fünften Larvenstadium zeigen im Phototaxisversuch unregelmäsig periodische Umkehr der Kriechrichtung (Fig. 1). Aus der weiteren Analyse der experimentellen Daten ergibt sich, dass dieser Richtungswechsel in der Mehrzahl der Fälle durch einen tatsächlichen Umschlag des Richtungssinnes der Phototaxis verursacht wird.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号