首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
研究方法   1篇
综合类   3篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Carlson ME  Hsu M  Conboy IM 《Nature》2008,454(7203):528-532
Adult skeletal muscle robustly regenerates throughout an organism's life, but as the muscle ages, its ability to repair diminishes and eventually fails. Previous work suggests that the regenerative potential of muscle stem cells (satellite cells) is not triggered in the old muscle because of a decline in Notch activation, and that it can be rejuvenated by forced local activation of Notch. Here we report that, in addition to the loss of Notch activation, old muscle produces excessive transforming growth factor (TGF)-beta (but not myostatin), which induces unusually high levels of TGF-beta pSmad3 in resident satellite cells and interferes with their regenerative capacity. Importantly, endogenous Notch and pSmad3 antagonize each other in the control of satellite-cell proliferation, such that activation of Notch blocks the TGF-beta-dependent upregulation of the cyclin-dependent kinase (CDK) inhibitors p15, p16, p21 and p27, whereas inhibition of Notch induces them. Furthermore, in muscle stem cells, Notch activity determines the binding of pSmad3 to the promoters of these negative regulators of cell-cycle progression. Attenuation of TGF-beta/pSmad3 in old, injured muscle restores regeneration to satellite cells in vivo. Thus a balance between endogenous pSmad3 and active Notch controls the regenerative competence of muscle stem cells, and deregulation of this balance in the old muscle microniche interferes with regeneration.  相似文献   
2.
3.
Conboy IM  Conboy MJ  Wagers AJ  Girma ER  Weissman IL  Rando TA 《Nature》2005,433(7027):760-764
The decline of tissue regenerative potential is a hallmark of ageing and may be due to age-related changes in tissue-specific stem cells. A decline in skeletal muscle stem cell (satellite cell) activity due to a loss of Notch signalling results in impaired regeneration of aged muscle. The decline in hepatic progenitor cell proliferation owing to the formation of a complex involving cEBP-alpha and the chromatin remodelling factor brahma (Brm) inhibits the regenerative capacity of aged liver. To examine the influence of systemic factors on aged progenitor cells from these tissues, we established parabiotic pairings (that is, a shared circulatory system) between young and old mice (heterochronic parabioses), exposing old mice to factors present in young serum. Notably, heterochronic parabiosis restored the activation of Notch signalling as well as the proliferation and regenerative capacity of aged satellite cells. The exposure of satellite cells from old mice to young serum enhanced the expression of the Notch ligand (Delta), increased Notch activation, and enhanced proliferation in vitro. Furthermore, heterochronic parabiosis increased aged hepatocyte proliferation and restored the cEBP-alpha complex to levels seen in young animals. These results suggest that the age-related decline of progenitor cell activity can be modulated by systemic factors that change with age.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号