排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
It has been a long-standing goal to detect the effects of quantum mechanics on a macroscopic mechanical oscillator. Position measurements of an oscillator are ultimately limited by quantum mechanics, where 'zero-point motion' fluctuations in the quantum ground state combine with the uncertainty relation to yield a lower limit on the measured average displacement. Development of a position transducer, integrated with a mechanical resonator, that can approach this limit could have important applications in the detection of very weak forces, for example in magnetic resonance force microscopy and a variety of other precision experiments. One implementation that might allow near quantum-limited sensitivity is to use a single electron transistor (SET) as a displacement sensor: the exquisite charge sensitivity of the SET at cryogenic temperatures is exploited to measure motion by capacitively coupling it to the mechanical resonator. Here we present the experimental realization of such a device, yielding an unequalled displacement sensitivity of 2 x 10(-15) m x Hz(-1/2) for a 116-MHz mechanical oscillator at a temperature of 30 mK-a sensitivity roughly a factor of 100 larger than the quantum limit for this oscillator. 相似文献
2.
3.
4.
Wolkovich EM Cook BI Allen JM Crimmins TM Betancourt JL Travers SE Pau S Regetz J Davies TJ Kraft NJ Ault TR Bolmgren K Mazer SJ McCabe GJ McGill BJ Parmesan C Salamin N Schwartz MD Cleland EE 《Nature》2012,485(7399):494-497
Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated. 相似文献
5.
Role of Bax and Bak in mitochondrial morphogenesis 总被引:1,自引:0,他引:1
Bcl-2 family proteins are potent regulators of programmed cell death. Although their intracellular localization to mitochondria and the endoplasmic reticulum has focused research on these organelles, how they function remains unknown. Two members of the Bcl-2 family, Bax and Bak, change intracellular location early in the promotion of apoptosis to concentrate in focal clusters at sites of mitochondrial division. Here we report that in healthy cells Bax or Bak is required for normal fusion of mitochondria into elongated tubules. Bax seems to induce mitochondrial fusion by activating assembly of the large GTPase Mfn2 and changing its submitochondrial distribution and membrane mobility-properties that correlate with different GTP-bound states of Mfn2. Our results show that Bax and Bak regulate mitochondrial dynamics in healthy cells and indicate that Bcl-2 family members may also regulate apoptosis through organelle morphogenesis machineries. 相似文献
6.
我们在[7]中引进了Gorenstein平坦模。本文将这类模的刻画推广到任意n-Gorenstein环上,并利用这类模刻画了n-Gorestein环。而且,我们证明了任意n-Gorenstein环上Gorenstein平坦预包络的存在性,并证得得这种环关于Gorenstein平坦模的内射类的整体维数至多为n-2,当n≤1时,该整体维数为零。 相似文献
7.
8.
Neeley M Bialczak RC Lenander M Lucero E Mariantoni M O'Connell AD Sank D Wang H Weides M Wenner J Yin Y Yamamoto T Cleland AN Martinis JM 《Nature》2010,467(7315):570-573
Entanglement is one of the key resources required for quantum computation, so the experimental creation and measurement of entangled states is of crucial importance for various physical implementations of quantum computers. In superconducting devices, two-qubit entangled states have been demonstrated and used to show violations of Bell's inequality and to implement simple quantum algorithms. Unlike the two-qubit case, where all maximally entangled two-qubit states are equivalent up to local changes of basis, three qubits can be entangled in two fundamentally different ways. These are typified by the states |GHZ>= (|000+?|111>)/ sqrt [2] and |W>= (|001>?+?|010>?+?|100>)/ sqrt [3]. Here we demonstrate the operation of three coupled superconducting phase qubits and use them to create and measure |GHZ> and |W>states. The states are fully characterized using quantum state tomography and are shown to satisfy entanglement witnesses, confirming that they are indeed examples of three-qubit entanglement and are not separable into mixtures of two-qubit entanglement. 相似文献
9.
Hofheinz M Weig EM Ansmann M Bialczak RC Lucero E Neeley M O'Connell AD Wang H Martinis JM Cleland AN 《Nature》2008,454(7202):310-314
Spin systems and harmonic oscillators comprise two archetypes in quantum mechanics. The spin-1/2 system, with two quantum energy levels, is essentially the most nonlinear system found in nature, whereas the harmonic oscillator represents the most linear, with an infinite number of evenly spaced quantum levels. A significant difference between these systems is that a two-level spin can be prepared in an arbitrary quantum state using classical excitations, whereas classical excitations applied to an oscillator generate a coherent state, nearly indistinguishable from a classical state. Quantum behaviour in an oscillator is most obvious in Fock states, which are states with specific numbers of energy quanta, but such states are hard to create. Here we demonstrate the controlled generation of multi-photon Fock states in a solid-state system. We use a superconducting phase qubit, which is a close approximation to a two-level spin system, coupled to a microwave resonator, which acts as a harmonic oscillator, to prepare and analyse pure Fock states with up to six photons. We contrast the Fock states with coherent states generated using classical pulses applied directly to the resonator. 相似文献
10.
Grimwood J Gordon LA Olsen A Terry A Schmutz J Lamerdin J Hellsten U Goodstein D Couronne O Tran-Gyamfi M Aerts A Altherr M Ashworth L Bajorek E Black S Branscomb E Caenepeel S Carrano A Caoile C Chan YM Christensen M Cleland CA Copeland A Dalin E Dehal P Denys M Detter JC Escobar J Flowers D Fotopulos D Garcia C Georgescu AM Glavina T Gomez M Gonzales E Groza M Hammon N Hawkins T Haydu L Ho I Huang W Israni S Jett J Kadner K Kimball H Kobayashi A Larionov V Leem SH Lopez F Lou Y Lowry S 《Nature》2004,428(6982):529-535
Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu. 相似文献