首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
现状及发展   3篇
综合类   3篇
  2012年   2篇
  2009年   1篇
  1999年   1篇
  1992年   2篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
Oxidation-reduction (redox) potential measurements were made in the blood of rabbits subjected to hemorrhagic shock followed by treatment with a mild oxidizing agent (albumin). Control redox potential reading corrected for pH was –8.8±1.3 millivolts (mV) in arterial blood (A) and –18.0±2.0 mV in venous blood (V). This A-V difference indicated that hydrogen equivalents coming from muscle and other tissues were partially consumed in the lungs. A 20-mV drop on the V and a 13 mV on the A side was seen after shock. This did not fully return to control 2 h after return of the shed blood. Infusion of 2 g of albumin/kg/h raised the V redox potential to control, but it returned to untreated levels when the albumin was discontinued. The reductive load imposed on the animal by shock appeared to be large and not readily reversed by reperfusion or by the quantity of albumin given. Thus, it may be concluded that cellular respiration had not been adequately restored. This reductive load may impede recovery by suppression of cellular respiration and other cell and organ functions.  相似文献   
2.
Mitochondrial metabolism provides precursors to build macromolecules in growing cancer cells. In normally functioning tumour cell mitochondria, oxidative metabolism of glucose- and glutamine-derived carbon produces citrate and acetyl-coenzyme A for lipid synthesis, which is required for tumorigenesis. Yet some tumours harbour mutations in the citric acid cycle (CAC) or electron transport chain (ETC) that disable normal oxidative mitochondrial function, and it is unknown how cells from such tumours generate precursors for macromolecular synthesis. Here we show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation rather than oxidative metabolism as the major pathway of citrate formation. This pathway uses mitochondrial and cytosolic isoforms of NADP(+)/NADPH-dependent isocitrate dehydrogenase, and subsequent metabolism of glutamine-derived citrate provides both the acetyl-coenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the remaining CAC metabolites and related macromolecular precursors. This reductive, glutamine-dependent pathway is the dominant mode of metabolism in rapidly growing malignant cells containing mutations in complex I or complex III of the ETC, in patient-derived renal carcinoma cells with mutations in fumarate hydratase, and in cells with normal mitochondria subjected to acute pharmacological ETC inhibition. Our findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.  相似文献   
3.
4.
The effect of shock on blood oxidation-reduction potential.   总被引:1,自引:0,他引:1  
Oxidation-reduction (redox) potential measurements were made in the blood of rabbits subjected to hemorrhagic shock followed by treatment with a mild oxidizing agent (albumin). Control redox potential reading corrected for pH was -8.8 +/- 1.3 millivolts (mV) in arterial blood (A) and -18.0 +/- 2.0 mV in venous blood (V). This A-V difference indicated that hydrogen equivalents coming from muscle and other tissues were partially consumed in the lungs. A 20-mV drop on the V and a 13 mV on the A side was seen after shock. This did not fully return to control 2 h after return of the shed blood. Infusion of 2 g of albumin/kg/h raised the V redox potential to control, but it returned to untreated levels when the albumin was discontinued. The reductive load imposed on the animal by shock appeared to be large and not readily reversed by reperfusion or by the quantity of albumin given. Thus, it may be concluded that cellular respiration had not been adequately restored. This reductive load may impede recovery by suppression of cellular respiration and other cell and organ functions.  相似文献   
5.
Jeon SM  Chandel NS  Hay N 《Nature》2012,485(7400):661-665
Overcoming metabolic stress is a critical step for solid tumour growth. However, the underlying mechanisms of cell death and survival under metabolic stress are not well understood. A key signalling pathway involved in metabolic adaptation is the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Energy stress conditions that decrease intracellular ATP levels below a certain level promote AMPK activation by LKB1. Previous studies showed that LKB1-deficient or AMPK-deficient cells are resistant to oncogenic transformation and tumorigenesis, possibly because of the function of AMPK in metabolic adaptation. However, the mechanisms by which AMPK promotes metabolic adaptation in tumour cells are not fully understood. Here we show that AMPK activation, during energy stress, prolongs cell survival by redox regulation. Under these conditions, NADPH generation by the pentose phosphate pathway is impaired, but AMPK induces alternative routes to maintain NADPH and inhibit cell death. The inhibition of the acetyl-CoA carboxylases ACC1 and ACC2 by AMPK maintains NADPH levels by decreasing NADPH consumption in fatty-acid synthesis and increasing NADPH generation by means of fatty-acid oxidation. Knockdown of either ACC1 or ACC2 compensates for AMPK activation and facilitates anchorage-independent growth and solid tumour formation in vivo, whereas the activation of ACC1 or ACC2 attenuates these processes. Thus AMPK, in addition to its function in ATP homeostasis, has a key function in NADPH maintenance, which is critical for cancer cell survival under energy stress conditions, such as glucose limitations, anchorage-independent growth and solid tumour formation in vivo.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号