首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
现状及发展   2篇
综合类   5篇
  2016年   1篇
  2005年   1篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
  1978年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Electrokinetic shape changes of cochlear outer hair cells   总被引:27,自引:0,他引:27  
B Kachar  W E Brownell  R Altschuler  J Fex 《Nature》1986,322(6077):365-368
Rapid mechanical changes have been associated with electrical activity in a variety of non-muscle excitable cells. Recently, mechanical changes have been reported in cochlear hair cells. Here we describe electrically evoked mechanical changes in isolated cochlear outer hair cells (OHCs) with characteristics which suggest that direct electrokinetic phenomena are implicated in the response. OHCs make up one of two mechanosensitive hair cell populations in the mammalian cochlea; their role may be to modulate the micromechanical properties of the hearing organ through mechanical feedback mechanisms. In the experiments described here, we applied sinusoidally modulated electrical potentials across isolated OHCs; this produced oscillatory elongation and shortening of the cells and oscillatory displacements of intracellular organelles. The movements were a function of the direction and strength of the electrical field, were inversely related to the ionic concentration of the medium, and occurred in the presence of metabolic uncouplers. The cylindrical shape of the OHCs and the presence of a system of membranes within the cytoplasm--laminated cisternae--may provide the anatomical substrate for electrokinetic phenomena such as electro-osmosis.  相似文献   
2.
This review concerns the organization and function of arterial vasculature in Aplysia californica, especially the vasomotor reflexes that support circulatory homeostasis, and fixed patterns of response that may reroute blood flow during changes in behavioral state. The observations presented here raise three hypotheses for further study: 1) Arterial vasculature is functionally organized with precisely structured, independently regulated subdivisions; these are most evident for arterial systems serving digestive and reproductive processes; 2) arterial musculature is inherently responsive to local pressure changes, having both static and dynamic reflexes that promote efficient, evenly-distributed flow of blood; and 3) complex, long-lasting behaviors like egg laying have, as part of their makeup, equally prolonged and stereotypical changes in the pattern of circulation. Taken together, these observations support the view that maintenance and adjustment of blood flow in gastropod molluscs is an unexpectedly complex and highly integrated component of behavior.  相似文献   
3.
植物根际微生物在植物修复重金属污染土壤时分泌的激素、铁载体、ACC脱氨酶、黄酮类化合物和酚酸类等\r\n有机物具有增强植物生长、促进植物根际对重金属吸收、转运和积累的作用,同时促进适应相应根际环境的功能微\r\n生物群落的建立.文章结合作者课题组的研究结果,概述根际微生物在植物修复重金属污染土壤过程中的作用,总\r\n结了根际细菌、真菌、古菌在植物修复中的作用,进一步分析了土壤污染类型、改良剂、根际植物的种类等对根际微\r\n生物活动的影响,对今后植物修复重金属污染土壤过程中与根际微生物作用相关的研究进行了展望.  相似文献   
4.
Evidence for local hormonal communication between neurones in Aplysia   总被引:2,自引:0,他引:2  
W D Branton  E Mayeri  P Brownell  S B Simon 《Nature》1978,274(5666):70-72
  相似文献   
5.
6.
7.
This review concerns the organization and function of arterial vasculature inAplysia californica, especially the vasomotor reflexes that support circulatory homeostasis, and fixed patterns of response that may reroute blood flow during changes in behavioral state. The observations presented here raise three hypotheses for further study: 1)Arterial vasculature is functionally organized with precisely structured, independently regulated subdivisions; these are most evident for arterial systems serving digestive and reproductive processes; 2) arterial musculature is inherently responsive to local pressure changes, having both static and dynamic reflexes that promote efficient, evenly-distributed flow of blood; and 3) complex, long-lasting behaviors like egg laying have, as part of their makeup, equally prolonged and stereotypical changes in the pattern of circulation. Taken together, these observations support the view that maintenance and adjustment of blood flow in gastropod molluscs is an unexpectedly complex and highly integrated component of behavior.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号