首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2003年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A chemical switch for inhibitor-sensitive alleles of any protein kinase   总被引:32,自引:0,他引:32  
Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases. From two inhibitor scaffolds, we have identified potent and selective inhibitors for sensitized kinases from five distinct subfamilies. Tyrosine and serine/threonine kinases are equally amenable to this approach. We have analysed a budding yeast strain carrying an inhibitor-sensitive form of the cyclin-dependent kinase Cdc28 (CDK1) in place of the wild-type protein. Specific inhibition of Cdc28 in vivo caused a pre-mitotic cell-cycle arrest that is distinct from the G1 arrest typically observed in temperature-sensitive cdc28 mutants. The mutation that confers inhibitor-sensitivity is easily identifiable from primary sequence alignments. Thus, this approach can be used to systematically generate conditional alleles of protein kinases, allowing for rapid functional characterization of members of this important gene family.  相似文献   
2.
The events of cell reproduction are governed by oscillations in the activities of cyclin-dependent kinases (Cdks). Cdks control the cell cycle by catalysing the transfer of phosphate from ATP to specific protein substrates. Despite their importance in cell-cycle control, few Cdk substrates have been identified. Here, we screened a budding yeast proteomic library for proteins that are directly phosphorylated by Cdk1 in whole-cell extracts. We identified about 200 Cdk1 substrates, several of which are phosphorylated in vivo in a Cdk1-dependent manner. The identities of these substrates reveal that Cdk1 employs a global regulatory strategy involving phosphorylation of other regulatory molecules as well as phosphorylation of the molecular machines that drive cell-cycle events. Detailed analysis of these substrates is likely to yield important insights into cell-cycle regulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号