首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2004年   1篇
  2001年   1篇
  1990年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
2.
Transposons have been enormously useful for genetic analysis in both Drosophila and bacteria. Mutagenic insertions constitute molecular tags that are used to rapidly clone the mutated gene. Such techniques would be especially advantageous in the nematode Caenorhabditis elegans, as the entire sequence of the genome has been determined. Several different types of endogenous transposons are present in C. elegans, and these can be mobilized in mutator strains (reviewed in ref. 1). Unfortunately, use of these native transposons for regulated transposition in C. elegans is limited. First, all strains contain multiple copies of these transposons and thus new insertions do not provide unique tags. Second, mutator strains tend to activate the transposition of several classes of transposons, so that the type of transposon associated with a particular mutation is not known. Here we demonstrate that the Drosophila mariner element Mos1 can be mobilized in C. elegans. First, efficient mobilization of Mos1 is possible in somatic cells. Second, heritable insertions of the transposon can be generated in the germ line. Third, genes that have been mutated by insertion can be rapidly identified using inverse polymerase chain reaction. Fourth, these insertions can subsequently be remobilized to generate deletion and frameshift mutations by imperfect excision.  相似文献   
3.
Gally C  Eimer S  Richmond JE  Bessereau JL 《Nature》2004,431(7008):578-582
Clustering neurotransmitter receptors at the synapse is crucial for efficient neurotransmission. Here we identify a Caenorhabditis elegans locus, lev-10, required for postsynaptic aggregation of ionotropic acetylcholine receptors (AChRs). lev-10 mutants were identified on the basis of weak resistance to the anthelminthic drug levamisole, a nematode-specific cholinergic agonist that activates AChRs present at neuromuscular junctions (NMJs) resulting in muscle hypercontraction and death at high concentrations. In lev-10 mutants, the density of levamisole-sensitive AChRs at NMJs is markedly reduced, yet the number of functional AChRs present at the muscle cell surface remains unchanged. LEV-10 is a transmembrane protein localized to cholinergic NMJs and required in body-wall muscles for AChR clustering. We also show that the LEV-10 extracellular region, containing five predicted CUB domains and one LDLa domain, is sufficient to rescue AChR aggregation in lev-10 mutants. This suggests a mechanism for AChR clustering that relies on extracellular protein-protein interactions. Such a mechanism is likely to be evolutionarily conserved because CUB/LDL transmembrane proteins similar to LEV-10, but lacking any assigned function, are expressed in the mammalian nervous system and might be used to cluster ionotropic receptors in vertebrates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号