首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2003年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Ultra-high-Q toroid microcavity on a chip   总被引:8,自引:0,他引:8  
Armani DK  Kippenberg TJ  Spillane SM  Vahala KJ 《Nature》2003,421(6926):925-928
The circulation of light within dielectric volumes enables storage of optical power near specific resonant frequencies and is important in a wide range of fields including cavity quantum electrodynamics, photonics, biosensing and nonlinear optics. Optical trajectories occur near the interface of the volume with its surroundings, making their performance strongly dependent upon interface quality. With a nearly atomic-scale surface finish, surface-tension-induced microcavities such as liquid droplets or spheres are superior to all other dielectric microresonant structures when comparing photon lifetime or, equivalently, cavity Q factor. Despite these advantageous properties, the physical characteristics of such systems are not easily controlled during fabrication. It is known that wafer-based processing of resonators can achieve parallel processing and control, as well as integration with other functions. However, such resonators-on-a-chip suffer from Q factors that are many orders of magnitude lower than for surface-tension-induced microcavities, making them unsuitable for ultra-high-Q experiments. Here we demonstrate a process for producing silica toroid-shaped microresonators-on-a-chip with Q factors in excess of 100 million using a combination of lithography, dry etching and a selective reflow process. Such a high Q value was previously attainable only by droplets or microspheres and represents an improvement of nearly four orders of magnitude over previous chip-based resonators.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号