首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2007年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The ability to cool and slow atoms with light for subsequent trapping allows investigations of the properties and interactions of the trapped atoms in unprecedented detail. By contrast, the complex structure of molecules prohibits this type of manipulation, but magnetic trapping of calcium hydride molecules thermalized in ultra-cold buffer gas and optical trapping of caesium dimers generated from ultra-cold caesium atoms have been reported. However, these methods depend on the target molecules being paramagnetic or able to form through the association of atoms amenable to laser cooling, respectively, thus restricting the range of species that can be studied. Here we describe the slowing of an adiabatically cooled beam of deuterated ammonia molecules by time-varying inhomogeneous electric fields and subsequent loading into an electrostatic trap. We are able to trap state-selected ammonia molecules with a density of 10(6) cm(-3) in a volume of 0.25 cm3 at temperatures below 0.35 K. We observe pronounced density oscillations caused by the rapid switching of the electric fields during loading of the trap. Our findings illustrate that polar molecules can be efficiently cooled and trapped, thus providing an opportunity to study collisions and collective quantum effects in a wide range of ultra-cold molecular systems.  相似文献   
2.
Ziurys LM  Milam SN  Apponi AJ  Woolf NJ 《Nature》2007,447(7148):1094-1097
The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号