首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
现状及发展   1篇
研究方法   1篇
综合类   3篇
  2013年   2篇
  2011年   1篇
  2007年   1篇
  1993年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Congenital heart defects affect approximately 1–5 % of human newborns each year, and of these cardiac defects 20–30 % are due to heart valve abnormalities. Recent literature indicates that the key factors and pathways that regulate valve development are also implicated in congenital heart defects and valve disease. Currently, there are limited options for treatment of valve disease, and therefore having a better understanding of valve development can contribute critical insight into congenital valve defects and disease. There are three major signaling pathways required for early specification and initiation of endothelial-to-mesenchymal transformation (EMT) in the cardiac cushions: BMP, TGF-β, and Notch signaling. BMPs secreted from the myocardium set up the environment for the overlying endocardium to become activated; Notch signaling initiates EMT; and both BMP and TGF-β signaling synergize with Notch to promote the transition of endothelia to mesenchyme and the mesenchymal cell invasiveness. Together, these three essential signaling pathways help form the cardiac cushions and populate them with mesenchyme and, consequently, set off the cascade of events required to develop mature heart valves. Furthermore, integration and cross-talk between these pathways generate highly stratified and delicate valve leaflets and septa of the heart. Here, we discuss BMP, TGF-β, and Notch signaling pathways during mouse cardiac cushion formation and how they together produce a coordinated EMT response in the developing mouse valves.  相似文献   
2.
低碳锰钢中周期性带状组织   总被引:6,自引:0,他引:6  
用扫描电镜和电子探针研究了低碳锰钢中的周期性带状组织,结果表明,在全部研究用钢中,钢锭经热轧后均出现这种组织,其严重程度随钢的成分而异,并随坯带加工顺序而增加,带状组织与锰的显微偏析等因素有关,适当的调整碳锰以及形成模跨铁素体带的转变产物可降低带状组织的严重程度。  相似文献   
3.
Yttrium and ytterbium were extracted from sulfuric acid medium using triphenylarsine (TPAs) dissolved in kerosene. The influence of different factors, such as shaking time, extractants, metal ions, sulfate ion concentrations, as well as temperature, was studied in detail. From the slope analysis method and IR measurements, the structure of the extracted species was suggested as MSO4(HSO4)·TPAs, where M refers to Y(III) or Yb(III). The equilibrium constants (Kex) and thermodynamic parameters, such as the change in enthalpy (ΔH), free energy (ΔG), and entropy (ΔS), were calculated. The method of extraction and stripping was applied to obtain the aforementioned metals from a sample of fluorspar mineral giving a recovery yield of 88.2% and 83.5% for yttrium and ytterbium, respectively.  相似文献   
4.
The importance of individual microRNAs (miRNAs) has been established in specific cancers. However, a comprehensive analysis of the contribution of miRNAs to the pathogenesis of any specific cancer is lacking. Here we show that in T-cell acute lymphoblastic leukemia (T-ALL), a small set of miRNAs is responsible for the cooperative suppression of several tumor suppressor genes. Cross-comparison of miRNA expression profiles in human T-ALL with the results of an unbiased miRNA library screen allowed us to identify five miRNAs (miR-19b, miR-20a, miR-26a, miR-92 and miR-223) that are capable of promoting T-ALL development in a mouse model and which account for the majority of miRNA expression in human T-ALL. Moreover, these miRNAs produce overlapping and cooperative effects on tumor suppressor genes implicated in the pathogenesis of T-ALL, including IKAROS (also known as IKZF1), PTEN, BIM, PHF6, NF1 and FBXW7. Thus, a comprehensive and unbiased analysis of miRNA action in T-ALL reveals a striking pattern of miRNA-tumor suppressor gene interactions in this cancer.  相似文献   
5.
Clathrin seems to be dispensable for some endocytic processes and, in several instances, no cytosolic coat protein complexes could be detected at sites of membrane invagination. Hence, new principles must in these cases be invoked to account for the mechanical force driving membrane shape changes. Here we show that the Gb3 (glycolipid)-binding B-subunit of bacterial Shiga toxin induces narrow tubular membrane invaginations in human and mouse cells and model membranes. In cells, tubule occurrence increases on energy depletion and inhibition of dynamin or actin functions. Our data thus demonstrate that active cellular processes are needed for tubule scission rather than tubule formation. We conclude that the B-subunit induces lipid reorganization that favours negative membrane curvature, which drives the formation of inward membrane tubules. Our findings support a model in which the lateral growth of B-subunit-Gb3 microdomains is limited by the invagination process, which itself is regulated by membrane tension. The physical principles underlying this basic cargo-induced membrane uptake may also be relevant to other internalization processes, creating a rationale for conceptualizing the perplexing diversity of endocytic routes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号