首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2007年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Thelatticemismatchbetweenthesubstrateandtheovergrownlayerallowstheformationofself as sembledquantumdots (QDs)throughtheStranski Krastanovmechanism[1,2 ] .Thistechniquehasbeensuccessfullyappliedtovarioussemiconductorsystems,andinparticulartoGe/Siquantumdots(Q…  相似文献   
2.
Akimov AV  Mukherjee A  Yu CL  Chang DE  Zibrov AS  Hemmer PR  Park H  Lukin MD 《Nature》2007,450(7168):402-406
Control over the interaction between single photons and individual optical emitters is an outstanding problem in quantum science and engineering. It is of interest for ultimate control over light quanta, as well as for potential applications such as efficient photon collection, single-photon switching and transistors, and long-range optical coupling of quantum bits. Recently, substantial advances have been made towards these goals, based on modifying photon fields around an emitter using high-finesse optical cavities. Here we demonstrate a cavity-free, broadband approach for engineering photon-emitter interactions via subwavelength confinement of optical fields near metallic nanostructures. When a single CdSe quantum dot is optically excited in close proximity to a silver nanowire, emission from the quantum dot couples directly to guided surface plasmons in the nanowire, causing the wire's ends to light up. Non-classical photon correlations between the emission from the quantum dot and the ends of the nanowire demonstrate that the latter stems from the generation of single, quantized plasmons. Results from a large number of devices show that efficient coupling is accompanied by more than 2.5-fold enhancement of the quantum dot spontaneous emission, in good agreement with theoretical predictions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号