首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
研究方法   1篇
综合类   3篇
  2014年   1篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Acar M  Becskei A  van Oudenaarden A 《Nature》2005,435(7039):228-232
On induction of cell differentiation, distinct cell phenotypes are encoded by complex genetic networks. These networks can prevent the reversion of established phenotypes even in the presence of significant fluctuations. Here we explore the key parameters that determine the stability of cellular memory by using the yeast galactose-signalling network as a model system. This network contains multiple nested feedback loops. Of the two positive feedback loops, only the loop mediated by the cytoplasmic signal transducer Gal3p is able to generate two stable expression states with a persistent memory of previous galactose consumption states. The parallel loop mediated by the galactose transporter Gal2p only increases the expression difference between the two states. A negative feedback through the inhibitor Gal80p reduces the strength of the core positive feedback. Despite this, a constitutive increase in the Gal80p concentration tunes the system from having destabilized memory to having persistent memory. A model reveals that fluctuations are trapped more efficiently at higher Gal80p concentrations. Indeed, the rate at which single cells randomly switch back and forth between expression states was reduced. These observations provide a quantitative understanding of the stability and reversibility of cellular differentiation states.  相似文献   
2.
In the modeling of microsegregation, the partition coefficient is usually calculated using data from the equilibrium phase diagrams. The aim of this study was to experimentally and theoretically analyze the partition coefficient in binary aluminum-copper alloys. The samples were analyzed by differential thermal analysis (DTA), which were melted and quenched from different temperatures during solidification. The mass fraction and composition of phases were measured by image processing and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) unit. These data were used to calculate as the experimental partition coefficients with four different methods. The experimental and equilibrium partition coefficients were used to model the concentration profile in the primary phase. The modeling results show that the profiles calculated by the experimental partition coefficients are more consistent with the experimental profiles, compared to those calculated using the equilibrium partition coefficients.  相似文献   
3.
A classic problem in population and evolutionary biology is to understand how a population optimizes its fitness in fluctuating environments. A population might enhance its fitness by allowing individual cells to stochastically transition among multiple phenotypes, thus ensuring that some cells are always prepared for an unforeseen environmental fluctuation. Here we experimentally explore how switching affects population growth by using the galactose utilization network of Saccharomyces cerevisiae. We engineered a strain that randomly transitions between two phenotypes as a result of stochastic gene expression. Each phenotype was designed to confer a growth advantage over the other phenotype in a certain environment. When we compared the growth of two populations with different switching rates, we found that fast-switching populations outgrow slow switchers when the environment fluctuates rapidly, whereas slow-switching phenotypes outgrow fast switchers when the environment changes rarely. These results suggest that cells may tune inter-phenotype switching rates to the frequency of environmental changes.  相似文献   
4.
Gonzalez-Leon JA  Acar MH  Ryu SW  Ruzette AV  Mayes AM 《Nature》2003,426(6965):424-428
The manufacturing of plastics traditionally involves melt processing at temperatures typically greater than 200 degrees C-to enable extrusion or moulding under pressure into desired forms-followed by solidification. This process consumes energy and can cause substantial degradation of polymers and additives (such as flame retardants and ultraviolet stabilizers), limiting plastics performance and recyclability. It was recently reported that the application of pressure could induce melt-like behaviour in the block copolymer polystyrene-block-poly(n-butyl methacrylate) (PS-b-PBMA), and this behaviour has now been demonstrated in a range of other block copolymer systems. These polymers have been termed baroplastics. However, in each case, the order-to-disorder transition, which gives rise to the accompanying change in rheology from soft solid to melt, was observed at temperatures far exceeding the glass transition temperatures (T(g)) of both components. Here we show that baroplastic systems containing nanophase domains of one high-T(g) and one low-T(g) component can exhibit melt-like flow under pressure at ambient temperature through an apparent semi-solid partial mixing mechanism that substantially preserves the high-T(g) phase. These systems were shredded and remoulded ten times with no evident property degradation. Baroplastics with low-temperature formability promise lower energy consumption in manufacture and processing, reduced use of additives, faster production and improved recyclability, and also provide potential alternatives to current thermoplastic elastomers, rubber-modified plastics, and semi-crystalline polymers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号