首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
校园无线网络产生大量用户位置数据,它使掌握用户行为轨迹、预测用户位置成为可能.协同过滤广泛用于预测和推荐系统中,但现有研究存在数据稀疏性和不适用于处理时空数据的缺点.本文提出基于聚类和时间权重的协同过滤位置预测算法.首先利用DBSCAN聚类算法对用户进行聚类,缓解数据稀疏性.然后在簇内计算用户-位置评分矩阵时引入时间权重,使用户近期的位置签到对预测有更大贡献.与传统协同过滤方法相比,该方法准确率提高9.1%,召回率提高5.2%,F1-SCORE提高7%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号