首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
教育与普及   5篇
综合类   5篇
  2022年   1篇
  2021年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
全球气候变化背景下气温日较差(amplitude of diurnal temperature,ADT)的减小将会对高寒生态系统的碳收支产生重要影响.基于涡度相关系统观测资料,研究祁连山南麓高寒草甸2002~2016年生长季(6~9月)ADT在日、月、年尺度上对CO2通量影响,为预测高寒草甸生态系统碳平衡对未来气候变化...  相似文献   
2.
高寒生态系统对全球碳循环发挥着至关重要的作用,然而对高寒生态系统长时间尺度上碳平衡动态及驱动机制的研究仍相对薄弱.本文以青藏高原东北部高寒金露梅灌丛为研究对象,分析了基于涡度相关系统观测的高寒灌丛2003~2016年生长季(5~9月)CO2通量动态及影响机制.结果表明,总初级生产力(gross primary production,GPP)和生态系统呼吸(ecosystem respiration, Re)呈先增加后降低的单峰趋势,净生态系统CO2交换(net ecosystem exchange, NEE)呈先下降后上升的"V"型变化趋势.高寒灌丛整个生长季总NEE、GPP和Re平均值分别为-143.8±30.5、509.0±65.1和365.2±34.6 g Cm-2,表现为碳汇.在月尺度,分类回归树分析(classification and regression trees,CART)表明,生长季积温(aggregated growing season degree days, GDD)是月GPP和月NEE的最重要...  相似文献   
3.
青藏高原高寒草甸生态系统稳定性研究   总被引:9,自引:0,他引:9  
青藏高原生态系统对全球气候变化较为敏感, 系统的行为能更早地预兆全球变化, 进而影响到邻近地区乃至全球气候. 因此, 青藏高原生态系统的行为研究具有特殊重要性. 利用中国科学院海北高寒草甸生态系统定位站多年来积累观测的长时间序列数据, 运用生态系统稳定性直接分析方法, 定量分析高寒草甸生态系统的稳定性及其对环境变化的灵敏度. 结果表明, 高寒草甸生态系统的主要气候因子如年降水、年均气温都比较稳定(CV值分别为16.55%和28.82%), 而年度地上净初级生产量较降水和气温更为稳定(CV值为13.18%). 净初级生产量关于降水和气温的灵敏度或弹性分别为E = 0.0782和0.1113, 即净初级生产量对降水和气温的波动均不敏感, 也说明高寒草甸生态系统具有较高的稳定性. 通过高寒草甸生态系统与世界其他地区5个草地生态系统的稳定性度量值横向比较, 也显示出该系统的稳定性程度较高. 结构相对比较简单的高寒草甸生态系统有较高的稳定性, 说明群落稳定性虽然与物种多样性和群落复杂性有关, 但未必成正比关系. 还有其他一些因素与生态系统稳定性密切相关, 如生物群落的外部环境稳定程度等. 高寒草甸生态系统的主要气候因子(年降水和年均气温)以3~4年的主周期随机低频振荡, 在其作用下生态系统的行为呈现同主周期、振幅比较稳定的随机波动. 高寒草甸生态系统的较高稳定性, 是较稳定的环境和系统适应环境的进化演替结果.  相似文献   
4.
青藏高原的散射辐射特征   总被引:2,自引:0,他引:2  
利用大量连续观测数据阐明了青藏高原散射辐射的时间变化特征,揭示了晴空指数(Rs/Ro)与散射辐射的关系,以及不同晴空指数条件下散射辐射随太阳高度角的变化.散射辐射日最高值出现在午后,年最高值出现在4月份.日晴空指数小于0.3时,太阳辐射基本以散射辐射形式到达地面,日晴空指数大于0.3时,散射辐射占总辐射的比例随晴空指数的增加而呈线性递减.日晴空指数达到0.45左右时,散射辐射占大气外界太阳辐射日总量的比例最高.散射辐射随太阳高度的蛇呈指数递增,但晴空指数在0.3~0.7范围内时,散射辐射随太阳高度角的变化最为明显.  相似文献   
5.
青藏高原高寒灌丛CO2通量日和月变化特征   总被引:7,自引:0,他引:7  
采用涡度相关法对青藏高原高寒灌丛CO2通量进行连续观测的结果表明, 青藏高原高寒灌丛CO2通量呈明显的日和月变化特征. 就日变化而言, 暖季(7月)CO2通量峰值出现在12:00左右(−1.19 g CO2/(m2·h) −1), 08:00~19:00时CO2净吸收, 而20:00~07:00为CO2净排放; 冷季(1月)CO2通量变化振幅极小, 除11:00~17:00时少量的CO2净排放以外(0.11 g CO2/(m2·h)−1左右), 其余时段CO2通量接近于零. 从月变化来看, 6~9月为CO2净吸收阶段, 8月CO2净吸收最大, 6~9月CO22净吸收的总量达673 g CO2/m2; 1~5月及10~12月为CO2净排放, 共排放446 g CO2/m2, 4月CO2净排放最大. 全年CO2通量核算表明, 无放牧条件下青藏高原高寒灌丛是显著的CO2汇, 全年CO2净吸收量达227 g CO2/m2.  相似文献   
6.
以青藏高原东北部高寒矮嵩草草甸为研究对象,通过3年的野外控制实验,研究了刈割(留茬高度1,3cm及不刈割)、施肥(施和不施尿素+磷酸二铵)和浇水(浇、不浇)处理对群落补偿生长的影响及其补偿机制.研究结果显示:随着刈割强度的增大,群落逐渐向以低矮植物为优势的方向转变,高大禾本科植物的重要值减少,矮生阔叶类杂草逐渐占据优势地位,物种多样性在各刈割处理间差异不显著.群落密度在中度刈割条件下最高,在不刈割和重度刈割处理间差异不显著.地上生物量的超补偿仅发生在中度刈割+施肥条件下,在不施肥处理中则为低补偿.群落盖度在中度刈割下较低,不刈割与重度刈割处理间差异不显著.浇水处理能显著增加群落密度,但对物种多样性、群落盖度及地上生物量影响均不显著.上述结果说明,重度刈割处理显著降低了生产性禾本科植物的重要值,而施肥能显著提高这些植物在群落中的优势度,并增加群落密度、盖度和地上生物量.中度刈割后,群落在密度和地上生物量方面表现出的超补偿机制与施肥的正效应共同作用,提高了群落的补偿能力.  相似文献   
7.
<正>“矮、密、平、膜”栽培技术的推广应用,对作为团场经济支柱的棉花来说是达到了较大的增产作用.“矮、密、早、膜”再加上其它技术管理措施,是使棉花获得高产的系统工程.在应用过程中,应根据具体情况灵活掌握,如果不顾主客观条件,片面强调某项指标和措施,就可能影响单位面积产量,达不到高效益的目的.比如近年来,随着保苗株数的提高,有些生产单位不是根据土壤肥力、密度的多少、播期早晚、长势的强弱来进行调控,片面强调矮化、结果吃了亏.经多年观察和实地调查,我们发现在密度相近的情况下,不同的棉株高度,对产量的影响十分明显.根据大面积调查统计,自然高度以70—80公分较为适宜.9月  相似文献   
8.
放牧强度和生境资源对高寒草甸群落补偿能力的影响   总被引:1,自引:0,他引:1  
研究了不同放牧强度、土壤养分和水分条件对高寒矮嵩草草甸三种生境的群落物种多样性及补偿能力的影响。结果表明:物种丰富度指数R和Shannon-Weiner多样性指数H′在牧道和封育草地显著高于畜圈生境,牧道生境的物种数最高,而畜圈物种数最少,仅为牧道的54%。地上生物量在牧道和畜圈生境均发生超补偿反应,地下生物量在畜圈为等量补偿,而在牧道发生超补偿反应。对畜圈生境群落地上生物量超补偿反应贡献最大的是垂穗披碱草,而对地下生物量等补偿反应贡献最大的是矮嵩草。在牧道生境中,对地上、地下生物量超补偿反应贡献最大的均为矮嵩草。群落地上、地下生物量的相对增长率在生境间无显著差异。土壤含水量与补偿生长无相关关系,地上生物量的补偿性生长与采摘率和土壤全氮质量分数正相关。这些结果支持中度干扰假说,同时说明高寒草甸群落的补偿响应模式与群落物种在生境间补偿量的消长变化有直接关系,补偿能力同时受放牧强度和土壤营养资源,特别是氮素营养的共同影响,而土壤水分的影响相对较小。  相似文献   
9.
青藏高原3种植被类型净生态系统CO2交换量的比较   总被引:11,自引:0,他引:11  
采用涡度相关观测技术系统, 于2003年7月1日~2004年6月30日对青藏高原高寒草甸3种植被类型(矮嵩草草甸、金露梅灌丛草甸和藏嵩草沼泽化草甸)生态系统CO2通量进行观测和分析. 结果表明, 嵩草草甸、灌丛草甸和沼泽化草甸CO2最大吸收率分别为16.78, 10.42和16.57 μmol/m2·s; 最大CO2排放率分别为8.22, 7.73和18.67 μmol/m2·s; 嵩草草甸和灌丛草甸一年从大气中分别吸收CO2 282和53 g/m2, 而沼泽草甸一年向大气排放CO2 478 g/m2. 证明青藏高原嵩草草甸和灌丛草甸比C4草原和一些低海拔草原和森林具有一个较低CO2吸收和排放量潜能, 而沼泽化草甸具有一个较高的排放潜能, 揭示了青藏高原高寒草甸生态系统不同植被类型的碳源/汇的明显差异, 主要是由植物光合能力不同和土壤呼吸差异引起的.  相似文献   
10.
<正>“102”和“128”是近年来石河子棉花所选育并筛选出的早熟高产优质的杂优组合。其组合为:“102”—新陆早一号×C—2441;“128”—929×pm83—4。为了探索其在生产上的应用前景,在师棉花所杨烈明副研究员的指导和助理农艺师闵耕同志的现场指挥下,1993年在我团良种连541号3条田安排种植了C—2441原种1.9亩,新陆早一号原种5.5亩,pm83—4原种1.7亩,929原种5.4亩。四个亲本共14.5亩。因考虑到盛花期劳力紧张,故实际制作面积是“102”父本0.95亩,母本2.14亩,“128”父本0.85亩,母本2.1亩,共6.04亩。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号