首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
为了改善资源推荐算法的性能,提出基于鲸鱼优化算法(WOA)改进长短期记忆神经网络(LSTM)的资源推荐算法;首先提取资源和用户特征,构建特征差异值加权函数;然后,以资源-用户特征作为输入,建立基于LSTM的资源推荐算法,通过输入门、遗忘门、输出门及记忆节点对历史资源推荐数据按权重进行遗忘与筛选,有选择性地挑选部分数据进行循环迭代训练;考虑到LSTM的门操作需要设置的参数较多,引入WOA进行参数智能优化求解,提出WOA-LSTM算法,以提高LSTM的参数优化的精度及效率。结果表明,通过合理设置WOA参数,可以有效改善LSTM的资源推荐性能,与常用资源推荐算法相比,所提出的WOA-LSTM算法具有更高的推荐精度及稳定性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号