首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
研究方法   1篇
综合类   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Pigmentary glaucoma is a significant cause of human blindness. Abnormally liberated iris pigment and cell debris enter the ocular drainage structures, leading to increased intraocular pressure (IOP) and glaucoma. DBA/2J (D2) mice develop a form of pigmentary glaucoma involving iris pigment dispersion (IPD) and iris stromal atrophy (ISA). Using high-resolution mapping techniques, sequencing and functional genetic tests, we show that IPD and ISA result from mutations in related genes encoding melanosomal proteins. IPD is caused by a premature stop codon mutation in the Gpnmb (GpnmbR150X) gene, as proved by the occurrence of IPD only in D2 mice that are homozygous with respect to GpnmbR150X; otherwise, similar D2 mice that are not homozygous for GpnmbR150X do not develop IPD. ISA is caused by the recessive Tyrp1b mutant allele and rescued by the transgenic introduction of wildtype Tyrp1. We hypothesize that IPD and ISA alter melanosomes, allowing toxic intermediates of pigment production to leak from melanosomes, causing iris disease and subsequent pigmentary glaucoma. This is supported by the rescue of IPD and ISA in D2 eyes with substantially decreased pigment production. These data indicate that pigment production and mutant melanosomal protein genes may contribute to human pigmentary glaucoma. The fact that hypopigmentation profoundly alleviates the D2 disease indicates that therapeutic strategies designed to decrease pigment production may be beneficial in human pigmentary glaucoma.  相似文献   
2.
Thomas DS  Knight M  Wiggs GF 《Nature》2005,435(7046):1218-1221
Although desert dunes cover 5 per cent of the global land surface and 30 per cent of Africa, the potential impacts of twenty-first century global warming on desert dune systems are not well understood. The inactive Sahel and southern African dune systems, which developed in multiple arid phases since the last interglacial period, are used today by pastoral and agricultural systems that could be disrupted if climate change alters twenty-first century dune dynamics. Empirical data and model simulations have established that the interplay between dune surface erodibility (determined by vegetation cover and moisture availability) and atmospheric erosivity (determined by wind energy) is critical for dunefield dynamics. This relationship between erodibility and erosivity is susceptible to climate-change impacts. Here we use simulations with three global climate models and a range of emission scenarios to assess the potential future activity of three Kalahari dunefields. We determine monthly values of dune activity by modifying and improving an established dune mobility index so that it can account for global climate model data outputs. We find that, regardless of the emission scenario used, significantly enhanced dune activity is simulated in the southern dunefield by 2039, and in the eastern and northern dunefields by 2069. By 2099 all dunefields are highly dynamic, from northern South Africa to Angola and Zambia. Our results suggest that dunefields are likely to be reactivated (the sand will become significantly exposed and move) as a consequence of twenty-first century climate warming.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号