首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
现状及发展   2篇
研究方法   4篇
综合类   11篇
  2011年   1篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1972年   2篇
  1969年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
Erythropoietin is the primary physiological regulator of erythropoiesis; however, in vitro studies have identified another class of mediators which appear to be important in stimulating erythroid progenitors. These factors have generally been referred to as burst-promoting activities (BPA), because they stimulate the growth of early erythroid progenitors referred to as burst-forming units-erythroid (BFU-E) which give rise to colonies of up to thousands of haemoglobinized cells. We recently reported purification of a burst-promoting activity from medium conditioned by the Mo T-lymphoblast cell line infected with human T-cell lymphotropic virus type II (HTLV-II). This purified glycoprotein of relative molecular mass (Mr) 28,000 also stimulates colony formation by more mature erythroid precursors (CFU-E) and is therefore referred to as erythroid-potentiating activity (EPA). Purified EPA specifically stimulates human and murine cells of the erythroid lineage, unlike murine interleukin-3 (IL-3) which stimulates precursor cells from all haematopoietic lineages. We report here the isolation of a complementary DNA molecular clone encoding EPA and its use in producing EPA in COS (monkey) cells and CHO (Chinese hamster ovary) cells. We also define the organization of the EPA gene in human DNA.  相似文献   
3.
Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.  相似文献   
4.
5.
6.
The development of neural stem cells.   总被引:106,自引:0,他引:106  
S Temple 《Nature》2001,414(6859):112-117
The discovery of stem cells that can generate neural tissue has raised new possibilities for repairing the nervous system. A rush of papers proclaiming adult stem cell plasticity has fostered the notion that there is essentially one stem cell type that, with the right impetus, can create whatever progeny our heart, liver or other vital organ desires. But studies aimed at understanding the role of stem cells during development have led to a different view - that stem cells are restricted regionally and temporally, and thus not all stem cells are equivalent. Can these views be reconciled?  相似文献   
7.
Division and differentiation of isolated CNS blast cells in microculture   总被引:24,自引:0,他引:24  
S Temple 《Nature》1989,340(6233):471-473
The mechanism of transformation of the overtly similar cells of the neural plate into the numerous and diverse cell types of the mature vertebrate central nervous system (CNS) can better be understood by studying the clonal development of isolated CNS precursor cells. Here I describe a culture system in which blast cells (cells capable of division) isolated from embryonic day 13.5-14.5 rat forebrain can divide and differentiate into a variety of clonal types. Most clones contain only neurons or glia; 22% contain both neurons and non-neuronal cells. For the division of blast cells, live conditioning cells need to be present indicating that environmental signals influence proliferation. Heterogeneous clones develop in homogeneous culture conditions, so factors intrinsic to the blast cells are probably important in determining the number and type of clonal progeny.  相似文献   
8.
W P Faulk  A Temple 《Nature》1976,262(5571):799-802
  相似文献   
9.
10.
The genome sequences of Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana have been predicted to contain 19,000, 13,600 and 25,500 genes, respectively. Before this information can be fully used for evolutionary and functional studies, several issues need to be addressed. First, the gene number estimates obtained in silico and not yet supported by any experimental data need to be verified. For example, it seems biologically paradoxical that C. elegans would have 50% more genes than Drosophilia. Second, intron/exon predictions need to be tested experimentally. Third, complete sets of open reading frames (ORFs), or "ORFeomes," need to be cloned into various expression vectors. To address these issues simultaneously, we have designed and applied to C. elegans the following strategy. Predicted ORFs are amplified by PCR from a highly representative cDNA library using ORF-specific primers, cloned by Gateway recombination cloning and then sequenced to generate ORF sequence tags (OSTs) as a way to verify identity and splicing. In a sample (n=1,222) of the nearly 10,000 genes predicted ab initio (that is, for which no expressed sequence tag (EST) is available so far), at least 70% were verified by OSTs. We also observed that 27% of these experimentally confirmed genes have a structure different from that predicted by GeneFinder. We now have experimental evidence that supports the existence of at least 17,300 genes in C. elegans. Hence we suggest that gene counts based primarily on ESTs may underestimate the number of genes in human and in other organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号