首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
研究方法   2篇
综合类   4篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  1986年   1篇
  1970年   1篇
排序方式: 共有6条查询结果,搜索用时 62 毫秒
1
1.
Genetic screens carried out in lower organisms such as yeast, Drosophila melanogaster and Caenorhabditis elegans have revealed many signaling pathways. For example, components of the RAS signaling cascade were identified using a mutant eye phenotype in D. melanogaster as a readout. Screening is usually based on enhancing or suppressing a phenotype by way of a known mutation in a particular signaling pathway. Such in vivo screens have been difficult to carry out in mammals, however, owing to their relatively long generation times and the limited number of animals that can be screened. Here we describe an in vivo mammalian genetic screen used to identify components of pathways contributing to oncogenic transformation. We applied retroviral insertional mutagenesis in Myc transgenic (E mu Myc) mice lacking expression of Pim1 and Pim2 to search for genes that can substitute for Pim1 and Pim2 in lymphomagenesis. We determined the chromosomal positions of 477 retroviral insertion sites (RISs) derived from 38 tumors from E mu Myc Pim1(-/-) Pim2(-/-) mice and 27 tumors from E mu Myc control mice using the Ensembl and Celera annotated mouse genome databases. There were 52 sites occupied by proviruses in more than one tumor. These common insertion sites (CISs) are likely to contain genes contributing to tumorigenesis. Comparison of the RISs in tumors of Pim-null mice with the RISs in tumors of E mu Myc control mice indicated that 10 of the 52 CISs belong to the Pim complementation group. In addition, we found that Pim3 is selectively activated in Pim-null tumor cells, which supports the validity of our approach.  相似文献   
2.
F T Káo  T T Puck 《Nature》1970,228(5269):329-332
  相似文献   
3.
Rehmann H  Das J  Knipscheer P  Wittinghofer A  Bos JL 《Nature》2006,439(7076):625-628
Epac proteins (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors (GEFs) for the small GTP-binding proteins Rap1 and Rap2 that are directly regulated by the second messenger cyclic AMP and function in the control of diverse cellular processes, including cell adhesion and insulin secretion. Here we report the three-dimensional structure of full-length Epac2, a 110-kDa protein that contains an amino-terminal regulatory region with two cyclic-nucleotide-binding domains and a carboxy-terminal catalytic region. The structure was solved in the absence of cAMP and shows the auto-inhibited state of Epac. The regulatory region is positioned with respect to the catalytic region by a rigid, tripartite beta-sheet-like structure we refer to as the 'switchboard' and an ionic interaction we call the 'ionic latch'. As a consequence of this arrangement, the access of Rap to the catalytic site is sterically blocked. Mutational analysis suggests a model for cAMP-induced Epac activation with rigid body movement of the regulatory region, the features of which are universally conserved in cAMP-regulated proteins.  相似文献   
4.
D P Gold  J M Puck  C L Pettey  M Cho  J Coligan  J N Woody  C Terhorst 《Nature》1986,321(6068):431-434
The antigen receptor on human T lymphocytes consists of two variable immunoglobulin-like glycoproteins, alpha and beta, which occur in association with three invariable T3 membrane proteins. In humans two of these proteins, T3-gamma and T3-delta, are glycoproteins of relative molecular mass (Mr) 25,000 (25K) and 20,000 (20K), respectively, while the third, T3-epsilon, is a 20K non-glycosylated protein. On the surface of murine T cells, a non-glycosylated protein dimer composed of 17K subunits (T3-zeta) is found associated with the T-cell receptor alpha and beta chains and the three T3-like polypeptide chains. It is generally accepted that major histocompatibility complex-restricted antigen recognition is a function of the alpha-beta heterodimer. This has led to the postulation that the proteins of the T3 complex are involved in the signal transduction that immediately follows antigen recognition via the antigen receptor. Events believed to be involved in early T-cell activation, such as rapid increases in phosphatidylinositol turnover and free intracellular calcium, can be triggered by antibodies directed against either the T3 complex or the clonotypic receptor. We have previously reported our findings on the cloning of the complementary DNA and genomic structure encoding both the human and murine 20K glycoprotein, T3-delta (refs 11-13). We now present our results on the cloning of the cDNA encoding the human 20K non-glycosylated chain, T3-epsilon.  相似文献   
5.
Apoptosis is a form of programmed cell death that is controlled by aspartate-specific cysteine proteases called caspases. In the immune system, apoptosis counters the proliferation of lymphocytes to achieve a homeostatic balance, which allows potent responses to pathogens but avoids autoimmunity. The CD95 (Fas, Apo-1) receptor triggers lymphocyte apoptosis by recruiting Fas-associated death domain (FADD), caspase-8 and caspase-10 proteins into a death-inducing signalling complex. Heterozygous mutations in CD95, CD95 ligand or caspase-10 underlie most cases of autoimmune lymphoproliferative syndrome (ALPS), a human disorder that is characterized by defective lymphocyte apoptosis, lymphadenopathy, splenomegaly and autoimmunity. Mutations in caspase-8 have not been described in ALPS, and homozygous caspase-8 deficiency causes embryonic lethality in mice. Here we describe a human kindred with an inherited genetic deficiency of caspase-8. Homozygous individuals manifest defective lymphocyte apoptosis and homeostasis but, unlike individuals affected with ALPS, also have defects in their activation of T lymphocytes, B lymphocytes and natural killer cells, which leads to immunodeficiency. Thus, caspase-8 deficiency in humans is compatible with normal development and shows that caspase-8 has a postnatal role in immune activation of naive lymphocytes.  相似文献   
6.
Mutations involving gains of glycosylation have been considered rare, and the pathogenic role of the new carbohydrate chains has never been formally established. We identified three children with mendelian susceptibility to mycobacterial disease who were homozygous with respect to a missense mutation in IFNGR2 creating a new N-glycosylation site in the IFNgammaR2 chain. The resulting additional carbohydrate moiety was both necessary and sufficient to abolish the cellular response to IFNgamma. We then searched the Human Gene Mutation Database for potential gain-of-N-glycosylation missense mutations; of 10,047 mutations in 577 genes encoding proteins trafficked through the secretory pathway, we identified 142 candidate mutations ( approximately 1.4%) in 77 genes ( approximately 13.3%). Six mutant proteins bore new N-linked carbohydrate moieties. Thus, an unexpectedly high proportion of mutations that cause human genetic disease might lead to the creation of new N-glycosylation sites. Their pathogenic effects may be a direct consequence of the addition of N-linked carbohydrate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号