首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
研究方法   1篇
综合类   3篇
  2009年   2篇
  2005年   1篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Extrusion freeforming can be used for the rapid prototyping of millimeter-wave electromagnetic bandgap (EBG) structures. In this work, an alumina-polymer paste with a relatively high volatility solvent (propanol) was used and the characteristics of the ceramic paste, particularly the rheological features are described. The advantage of high volatility solvent is that the viscosity and elastic modulus of the paste are increased sharply as the solvent evaporates. Thus, the rigidity of the extruded filament is quickly increased as a small amount of solvent evaporates. Finally, by employing this procedure, different EBG structures such as 2-D, 3-D woodpile and aperiodic structures were fabricated and their bandgaps were measured. The experimental results show that extrusion freeforming is a relatively simple and easy method to fabricate these woodpile structures with a bandgap in the 90–110 GHz region.  相似文献   
2.
A view of manufacturing processes is presented in which five distinct categories are defined as casting, deformation, machining, joining, and solid freeforming. Solid freeforming is essentially biomimetic and shares problems of morphogenesis with natural processes. Our team in University of London has been exploring three mechanisms of solid freeforming. In dry powder deposition and direct ink-jet printing, the emphasis has turned to the problem of delivering a complex shape in which the three dimensional spatial arrangement of composition is delivered from the design file. In extrusion freeforming, the aim is to control microstructure at hierarchical levels also from the design file. The quest for 3-D functional gradients is satisfied by acoustic and ultrasonic dispensing and mixing of powders so that each layer can be patterned. These methods could be extended to deliver the complex patterns demanded by left-handed microwave metamaterials. Dry powder deposition and direct ink-jet printing are turning towards combinatorial methods in which multiple sample libraries are used to accelerate discovery. In turn, this paves the way for ‘autonomous research machines’ which steer their own search refinements in response to our requests for new materials. In this way, solid freeforming used for sample preparation can give an ‘arm’ to an intelligent machine so that it can conduct its own experimentation and learning; an idea that originated with Alan Turing in the late 1940s.  相似文献   
3.
Epilepsies affect at least 2% of the population at some time in life, and many forms have genetic determinants. We have found a mutation in a gene encoding a GABA(A) receptor subunit in a large family with epilepsy. The two main phenotypes were childhood absence epilepsy (CAE) and febrile seizures (FS). There is a recognized genetic relationship between FS and CAE, yet the two syndromes have different ages of onset, and the physiology of absences and convulsions is distinct. This suggests the mutation has age-dependent effects on different neuronal networks that influence the expression of these clinically distinct, but genetically related, epilepsy phenotypes. We found that the mutation in GABRG2 (encoding the gamma2-subunit) abolished in vitro sensitivity to diazepam, raising the possibility that endozepines do in fact exist and have a physiological role in preventing seizures.  相似文献   
4.
Otomo T  Tomchick DR  Otomo C  Panchal SC  Machius M  Rosen MK 《Nature》2005,433(7025):488-494
The conserved formin homology 2 (FH2) domain nucleates actin filaments and remains bound to the barbed end of the growing filament. Here we report the crystal structure of the yeast Bni1p FH2 domain in complex with tetramethylrhodamine-actin. Each of the two structural units in the FH2 dimer binds two actins in an orientation similar to that in an actin filament, suggesting that this structure could function as a filament nucleus. Biochemical properties of heterodimeric FH2 mutants suggest that the wild-type protein equilibrates between two bound states at the barbed end: one permitting monomer binding and the other permitting monomer dissociation. Interconversion between these states allows processive barbed-end polymerization and depolymerization in the presence of bound FH2 domain. Kinetic and/or thermodynamic differences in the conformational and binding equilibria can explain the variable activity of different FH2 domains as well as the effects of the actin-binding protein profilin on FH2 function.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号