首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
现状及发展   1篇
研究方法   1篇
综合类   1篇
  2017年   1篇
  2001年   1篇
  1989年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Metabolomics is an analytical technique that investigates the small biochemical molecules present within a biological sample isolated from a plant, animal, or cultured cells. It can be an extremely powerful tool in elucidating the specific metabolic changes within a biological system in response to an environmental challenge such as disease, infection, drugs, or toxins. A historically difficult step in the metabolomics pipeline is in data interpretation to a meaningful biological context, for such high-variability biological samples and in untargeted metabolomics studies that are hypothesis-generating by design. One way to achieve stronger biological context of metabolomic data is via the use of cultured cell models, particularly for mammalian biological systems. The benefits of in vitro metabolomics include a much greater control of external variables and no ethical concerns. The current concerns are with inconsistencies in experimental procedures and level of reporting standards between different studies. This review discusses some of these discrepancies between recent studies, such as metabolite extraction and data normalisation. The aim of this review is to highlight the importance of a standardised experimental approach to any cultured cell metabolomics study and suggests an example procedure fully inclusive of information that should be disclosed in regard to the cell type/s used and their culture conditions. Metabolomics of cultured cells has the potential to uncover previously unknown information about cell biology, functions and response mechanisms, and so the accurate biological interpretation of the data produced and its ability to be compared to other studies should be considered vitally important.  相似文献   
2.
3.
T K Ghosh  J M Mullaney  F I Tarazi  D L Gill 《Nature》1989,340(6230):236-239
Inositol 1,4,5-trisphosphate (InsP3) is an established mediator of intracellular Ca2+ signals but little is known of the nature and organization of Ca2+ regulatory organelles responsive to InsP3. Here we derive new information from the study of Ca2+ movements induced both by InsP3 and a specific GTP-activated Ca2+ translocation process. The latter mechanism is clearly distinct from that activated by InsP3 and may involve the translocation of Ca2+ between compartments without its release into the cytosol. This idea is supported by the fact that GTP activates Ca2+ movement into the InsP3-releasable pool. In the light of this evidence we postulated that there are two intracellular Ca2+ pools distinguishable by InsP3-sensitivity and oxalate-permeability, and that movement between them is activated by GTP. We report here direct evidence for the existence and separation of two distinct Ca2+-pumping compartments with properties coinciding with those predicted. Of these, the InsP3-sensitive Ca2+ pool is identified within a purified rough endoplasmic reticulum fraction, an observation consistent with recent InsP3 receptor-localization studies. Ca2+ translocation between pools may reflect function of a class of small GTP-binding proteins known to mediate interorganelle transfer in eukaryotic cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号