首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
现状及发展   1篇
研究方法   2篇
  2007年   1篇
  2004年   1篇
  1967年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
ARC syndrome (OMIM 208085) is an autosomal recessive multisystem disorder characterized by neurogenic arthrogryposis multiplex congenita, renal tubular dysfunction and neonatal cholestasis with bile duct hypoplasia and low gamma glutamyl transpeptidase (gGT) activity. Platelet dysfunction is common. Affected infants do not thrive and usually die in the first year of life. To elucidate the molecular basis of ARC, we mapped the disease to a 7-cM interval on 15q26.1 and then identified germline mutations in the gene VPS33B in 14 kindreds with ARC. VPS33B encodes a homolog of the class C yeast vacuolar protein sorting gene, Vps33, that contains a Sec1-like domain important in the regulation of vesicle-to-target SNARE complex formation and subsequent membrane fusion.  相似文献   
2.
3.
Cross-talk and decision making in MAP kinase pathways   总被引:1,自引:0,他引:1  
Cells must respond specifically to different environmental stimuli in order to survive. The signal transduction pathways involved in sensing these stimuli often share the same or homologous proteins. Despite potential cross-wiring, cells show specificity of response. We show, through modeling, that the physiological response of such pathways exposed to simultaneous and temporally ordered inputs can demonstrate system-level mechanisms by which pathways achieve specificity. We apply these results to the hyperosmolar and pheromone mitogen-activated protein (MAP) kinase pathways in the yeast Saccharomyces cerevisiae. These two pathways specifically sense osmolar and pheromone signals, despite sharing a MAPKKK, Ste11, and having homologous MAPKs (Fus3 and Hog1). We show that in a single cell, the pathways are bistable over a range of inputs, and the cell responds to only one stimulus even when exposed to both. Our results imply that these pathways achieve specificity by filtering out spurious cross-talk through mutual inhibition. The variability between cells allows for heterogeneity of the decisions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号