首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
研究方法   2篇
综合类   4篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Shin MK  Levorse JM  Ingram RS  Tilghman SM 《Nature》1999,402(6761):496-501
Endothelin receptor B (EDNRB) is a G-protein-coupled receptor with seven transmembrane domains which is required for the development of melanocytes and enteric neurons. Mice that are homozygous for a null mutation in the Ednrb gene are almost completely white and die as juveniles from megacolon. To determine when EDNRB signalling is required during embryogenesis, we have exploited the tetracycline-inducible system to generate strains of mice in which the endogenous Ednrb locus is under the control of the tetracycline-dependant transactivators tTa or rtTA. By using this system to express Ednrb at different stages of embryogenesis, we have determined that EDNRB is required during a restricted period of neural crest development between embryonic days 10 and 12.5. Moreover, our results imply that EDNRB is required for the migration of both melanoblasts and enteric neuroblasts.  相似文献   
2.
Genomic imprinting is an epigenetic process in which the activity of a gene is determined by its parent of origin. Mechanisms governing genomic imprinting are just beginning to be understood. However, the tendency of imprinted genes to exist in chromosomal clusters suggests a sharing of regulatory elements. To better understand imprinted gene clustering, we disrupted a cluster of imprinted genes on mouse distal chromosome 7 using the Cre/loxP recombination system. In mice carrying a site-specific translocation separating Cdkn1c and Kcnq1, imprinting of the genes retained on chromosome 7, including Kcnq1, Kcnq1ot1, Ascl2, H19 and Igf2, is unaffected, demonstrating that these genes are not regulated by elements near or telomeric to Cdkn1c. In contrast, expression and imprinting of the translocated Cdkn1c, Slc22a1l and Tssc3 on chromosome 11 are affected, consistent with the hypothesis that elements regulating both expression and imprinting of these genes lie within or proximal to Kcnq1. These data support the proposal that chromosomal abnormalities, including translocations, within KCNQ1 that are associated with the human disease Beckwith-Wiedemann syndrome (BWS) may disrupt CDKN1C expression. These results underscore the importance of gene clustering for the proper regulation of imprinted genes.  相似文献   
3.
CTCF maintains differential methylation at the Igf2/H19 locus   总被引:21,自引:0,他引:21  
  相似文献   
4.
5.
Dissecting self-renewal in stem cells with RNA interference   总被引:1,自引:0,他引:1  
  相似文献   
6.
The Insulin-like growth factor 2 (Igf2) and H19 genes are imprinted, resulting in silencing of the maternal and paternal alleles, respectively. This event is dependent upon an imprinted-control region two kilobases upstream of H19 (refs 1, 2). On the paternal chromosome this element is methylated and required for the silencing of H19 (refs 2-4). On the maternal chromosome the region is unmethylated and required for silencing of the Igf2 gene 90 kilobases upstream. We have proposed that the unmethylated imprinted-control region acts as a chromatin boundary that blocks the interaction of Igf2 with enhancers that lie 3' of H19 (refs 5, 6). This enhancer-blocking activity would then be lost when the region was methylated, thereby allowing expression of Igf2 paternally. Here we show, using transgenic mice and tissue culture, that the unmethylated imprinted-control regions from mouse and human H19 exhibit enhancer-blocking activity. Furthermore, we show that CTCF, a zinc finger protein implicated in vertebrate boundary function, binds to several sites in the unmethylated imprinted-control region that are essential for enhancer blocking. Consistent with our model, CTCF binding is abolished by DNA methylation. This is the first example, to our knowledge, of a regulated chromatin boundary in vertebrates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号