首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
研究方法   2篇
综合类   17篇
  2012年   1篇
  2010年   1篇
  2008年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1991年   2篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
Receptor tyrosine kinases often have critical roles in particular cell lineages by initiating signalling cascades in those lineages. Examples include the neural-specific TRK receptors, the VEGF and angiopoietin endothelial-specific receptors, and the muscle-specific MUSK receptor. Many lineage-restricted receptor tyrosine kinases were initially identified as 'orphans' homologous to known receptors, and only subsequently used to identify their unknown growth factors. Some receptor-tyrosine-kinase-like orphans still lack identified ligands as well as biological roles. Here we characterize one such orphan, encoded by Ror2 (ref. 12). We report that disruption of mouse Ror2 leads to profound skeletal abnormalities, with essentially all endochondrally derived bones foreshortened or misshapen, albeit to differing degrees. Further, we find that Ror2 is selectively expressed in the chondrocytes of all developing cartilage anlagen, where it essential during initial growth and patterning, as well as subsequently in the proliferating chondrocytes of mature growth plates, where it is required for normal expansion. Thus, Ror2 encodes a receptor-like tyrosine kinase that is selectively expressed in, and particularly important for, the chondrocyte lineage.  相似文献   
2.
Kimble HJ 《Nature》2008,453(7198):1023-1030
Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.  相似文献   
3.
R Blelloch  J Kimble 《Nature》1999,399(6736):586-590
The molecular controls governing organ shape are poorly understood. In the nematode Caenorhabditis elegans, the gonad acquires a U-shape by the directed migration of a specialized 'leader' cell, which is located at the tip of the growing gonadal 'arm'. The gon-1 gene is essential for gonadal morphogenesis: in gon-1 mutants, no arm elongation occurs and somatic gonadal structures are severely malformed. Here we report that gon-1 encodes a secreted protein with a metalloprotease domain and multiple thrombospondin type-1-like repeats. This motif architecture is typical of a small family of genes that include bovine procollagen I N-protease (P1NP), which cleaves collagen, and murine ADAMTS-1, the expression of which correlates with tumour cell progression. We find that gon-1 is expressed in two sites, leader cells and muscle, and that expression in each site has a unique role in forming the gonad. We speculate that GON-1 controls morphogenesis by remodelling basement membranes and that regulation of its activity is crucial for achieving organ shape.  相似文献   
4.
Asymmetric and symmetric stem-cell divisions in development and cancer   总被引:2,自引:0,他引:2  
Morrison SJ  Kimble J 《Nature》2006,441(7097):1068-1074
Much has been made of the idea that asymmetric cell division is a defining characteristic of stem cells that enables them to simultaneously perpetuate themselves (self-renew) and generate differentiated progeny. Yet many stem cells can divide symmetrically, particularly when they are expanding in number during development or after injury. Thus, asymmetric division is not necessary for stem-cell identity but rather is a tool that stem cells can use to maintain appropriate numbers of progeny. The facultative use of symmetric or asymmetric divisions by stem cells may be a key adaptation that is crucial for adult regenerative capacity.  相似文献   
5.
6.
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.  相似文献   
7.
Photon blockade in an optical cavity with one trapped atom   总被引:1,自引:0,他引:1  
At low temperatures, sufficiently small metallic and semiconductor devices exhibit the 'Coulomb blockade' effect, in which charge transport through the device occurs on an electron-by-electron basis. For example, a single electron on a metallic island can block the flow of another electron if the charging energy of the island greatly exceeds the thermal energy. The analogous effect of 'photon blockade' has been proposed for the transport of light through an optical system; this involves photon-photon interactions in a nonlinear optical cavity. Here we report observations of photon blockade for the light transmitted by an optical cavity containing one trapped atom, in the regime of strong atom-cavity coupling. Excitation of the atom-cavity system by a first photon blocks the transmission of a second photon, thereby converting an incident poissonian stream of photons into a sub-poissonian, anti-bunched stream. This is confirmed by measurements of the photon statistics of the transmitted field. Our observations of photon blockade represent an advance over traditional nonlinear optics and laser physics, into a regime with dynamical processes involving atoms and photons taken one-by-one.  相似文献   
8.
Epigenetic information is frequently erased near the start of each new generation. In some cases, however, epigenetic information can be transmitted from parent to progeny (multigenerational epigenetic inheritance). A particularly notable example of this type of epigenetic inheritance is double-stranded RNA-mediated gene silencing in Caenorhabditis elegans. This RNA-mediated interference (RNAi) can be inherited for more than five generations. To understand this process, here we conduct a genetic screen for nematodes defective in transmitting RNAi silencing signals to future generations. This screen identified the heritable RNAi defective 1 (hrde-1) gene. hrde-1 encodes an Argonaute protein that associates with small interfering RNAs in the germ cells of progeny of animals exposed to double-stranded RNA. In the nuclei of these germ cells, HRDE-1 engages the nuclear RNAi defective pathway to direct the trimethylation of histone H3 at Lys?9 (H3K9me3) at RNAi-targeted genomic loci and promote RNAi inheritance. Under normal growth conditions, HRDE-1 associates with endogenously expressed short interfering RNAs, which direct nuclear gene silencing in germ cells. In hrde-1- or nuclear RNAi-deficient animals, germline silencing is lost over generational time. Concurrently, these animals exhibit steadily worsening defects in gamete formation and function that ultimately lead to sterility. These results establish that the Argonaute protein HRDE-1 directs gene-silencing events in germ-cell nuclei that drive multigenerational RNAi inheritance and promote immortality of the germ-cell lineage. We propose that C. elegans use the RNAi inheritance machinery to transmit epigenetic information, accrued by past generations, into future generations to regulate important biological processes.  相似文献   
9.
S E Mango  E M Maine  J Kimble 《Nature》1991,352(6338):811-815
The glp-1 and lin-12 genes encode homologous transmembrane proteins that may act as receptors for cell interactions during development. The glp-1 product is required for induction of germ-line proliferation and for embryogenesis. By contrast, lin-12 mediates somatic cell interactions, including those between the precursor cells that form the vulval hypodermis (VPCs). Here we analyse an unusual allele of glp-1, glp-1(q35), which displays a semidominant multivulva phenotype (Muv), as well as the typical recessive, loss-of-function Glp phenotypes (sterility and embryonic lethality). We find that the effects of glp-1(q35) on VPC development mimic those of dominant lin-12 mutations, even in the absence of lin-12 activity. The glp-1(q35) gene bears a nonsense mutation predicted to eliminate the 122 C-terminal amino acids, including a ProGluSerThr (PEST) sequence thought to destabilize proteins. We suggest that the carboxy terminus bears a negative regulatory domain which normally inactivates glp-1 in the VPCs. We propose that inappropriate glp-1(q35) activity can substitute for lin-12 to determine vulval fate, perhaps by driving the VPCs to proliferate.  相似文献   
10.
J Ahringer  J Kimble 《Nature》1991,349(6307):346-348
In the Caenorhabditis elegans hermaphrodite germ line, sperm and then oocytes are made from a common pool of germ-cell precursors. The decision to differentiate as a sperm or an oocyte is regulated by the sex-determining gene, fem-3. Expression of fem-3 in the hermaphrodite germ line directs spermatogenesis and must be negatively regulated to allow the switch to oogenesis. In adult hermaphrodites (which are producing oocytes), most fem-3 RNA is found in the germ line, consistent with both the requirement for fem-3 in hermaphrodite spermatogenesis and the maternal effects of fem-3 on embryonic sex determination. Whereas loss-of-function mutants in fem-3 produce only oocytes, hermaphrodites carrying any of nine fem-3 gain-of-function (gf) mutations make none; instead sperm are produced continuously and in vast excess over wild-type amounts. Genetic analyses suggest that fem-3(gf) mutations have escaped a negative control required for the switch to oogenesis. Here we report that all nine fem-3(gf) mutants carry sequence alterations in the fem-3 3' untranslated region (3' UTR). There is no increase in the steady-state level of fem-3(gf) RNA over wild-type, but there is an increase in the polyadenylation of fem-3(gf) RNA that is coincident with the unregulated fem-3 activity. Results of a titration experiment support the hypothesis that a regulatory factor may bind the fem-3 3' UTR. We speculate that fem-3 RNA is regulated through its 3' UTR by binding a factor that inhibits translation, and discuss the idea that this control may be part of a more general regulation of maternal RNAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号