首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
研究方法   2篇
综合类   6篇
  2011年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1972年   1篇
排序方式: 共有8条查询结果,搜索用时 484 毫秒
1
1.
2.
3.
Mice that overexpress the human mutant amyloid precursor protein (hAPP) show learning deficits, but the apparent lack of a relationship between these deficits and the progressive beta-amyloid plaque formation that the hAPP mice display is puzzling. In the water maze, hAPP mice are impaired before and after amyloid plaque deposition. Here we show, using a new water-maze training protocol, that PDAPP mice also exhibit a separate age-related deficit in learning a series of spatial locations. This impairment correlates with beta-amyloid plaque burden and is shown in both cross-sectional and longitudinal experimental designs. Cued navigation and object-recognition memory are normal. These findings indicate that A beta overexpression and/or A beta plaques are associated with disturbed cognitive function and, importantly, suggest that some but not all forms of learning and memory are suitable behavioural assays of the progressive cognitive deficits associated with Alzheimer's-disease-type pathologies.  相似文献   
4.
Members of the tumour-necrosis factor receptor (TNFR) family that contain an intracellular death domain initiate signalling by recruiting cytoplasmic death domain adapter proteins. Edar is a death domain protein of the TNFR family that is required for the development of hair, teeth and other ectodermal derivatives. Mutations in Edar-or its ligand, Eda-cause hypohidrotic ectodermal dysplasia in humans and mice. This disorder is characterized by sparse hair, a lack of sweat glands and malformation of teeth. Here we report the identification of a death domain adapter encoded by the mouse crinkled locus. The crinkled mutant has an hypohidrotic ectodermal dysplasia phenotype identical to that of the edar (downless) and eda (Tabby) mutants. This adapter, which we have called Edaradd (for Edar-associated death domain), interacts with the death domain of Edar and links the receptor to downstream signalling pathways. We also identify a missense mutation in its human orthologue, EDARADD, that is present in a family affected with hypohidrotic ectodermal dysplasia. Our findings show that the death receptor/adapter signalling mechanism is conserved in developmental, as well as apoptotic, signalling.  相似文献   
5.
M E Gilpin  K E Justice 《Nature》1972,236(5345):273-4 passim
  相似文献   
6.
7.
Now that the mouse and human genome sequences are complete, biologists need systematic approaches to determine the function of each gene. A powerful way to discover gene function is to determine the consequence of mutations in living organisms. Large-scale production of mouse mutations with the point mutagen N-ethyl-N-nitrosourea (ENU) is a key strategy for analysing the human genome because mouse mutants will reveal functions unique to mammals, and many may model human diseases. To examine genes conserved between human and mouse, we performed a recessive ENU mutagenesis screen that uses a balancer chromosome, inversion chromosome 11 (refs 4, 5). Initially identified in the fruitfly, balancer chromosomes are valuable genetic tools that allow the easy isolation of mutations on selected chromosomes. Here we show the isolation of 230 new recessive mouse mutations, 88 of which are on chromosome 11. This genetic strategy efficiently generates and maps mutations on a single chromosome, even as mutations throughout the genome are discovered. The mutations reveal new defects in haematopoiesis, craniofacial and cardiovascular development, and fertility.  相似文献   
8.
Treatment with N-ethyl-N-nitrosourea (ENU) efficiently generates single-nucleotide mutations in mice. Along with the renewed interest in this approach, much attention has been given recently to large screens with broad aims; however, more finely focused studies have proven very productive as well. Here we show how mutagenesis together with genetic mapping can facilitate the rapid characterization of recessive loci required for normal embryonic development. We screened third-generation progeny of mutagenized mice at embryonic day (E) 18.5 for abnormalities of organogenesis. We ascertained 15 monogenic mutations in the 54 families that were comprehensively analyzed. We carried out the experiment as an outcross, which facilitated the genetic mapping of the mutations by haplotype analysis. We mapped seven of the mutations and identified the affected locus in two lines. Using a hierarchical approach, it is possible to maximize the efficiency of this analysis so that it can be carried out easily with modest infrastructure and resources.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号