首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
现状及发展   2篇
研究方法   2篇
  2021年   1篇
  2010年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.

A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut–brain interaction, inflammatory bowel diseases, and colorectal cancer.

  相似文献   
2.
Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153-156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.  相似文献   
3.
RNA interference has tremendously advanced our understanding of gene function but recent reports have exposed undesirable side-effects. Recombinant Camelid single-domain antibodies (VHHs) provide an attractive means for studying protein function without affecting gene expression. We raised VHHs against gelsolin (GsnVHHs), a multifunctional actin-binding protein that controls cellular actin organization and migration. GsnVHH-induced delocalization of gelsolin to mitochondria or the nucleus in mammalian cells reveals distinct subpopulations including free gelsolin and actin-bound gelsolin complexes. GsnVHH 13 specifically recognizes Ca2+-activated gelsolin (K d ~10 nM) while GsnVHH 11 binds gelsolin irrespective of Ca2+ (K d ~5 nM) but completely blocks its interaction with G-actin. Both GsnVHHs trace gelsolin in membrane ruffles of EGF-stimulated MCF-7 cells and delay cell migration without affecting F-actin severing/capping or actin nucleation activities by gelsolin. We conclude that VHHs represent a potent way of blocking structural proteins and that actin nucleation by gelsolin is more complex than previously anticipated.  相似文献   
4.
Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy   总被引:19,自引:0,他引:19  
Distal hereditary motor neuropathies are pure motor disorders of the peripheral nervous system resulting in severe atrophy and wasting of distal limb muscles. In two pedigrees with distal hereditary motor neuropathy type II linked to chromosome 12q24.3, we identified the same mutation (K141N) in small heat-shock 22-kDa protein 8 (encoded by HSPB8; also called HSP22). We found a second mutation (K141E) in two smaller families. Both mutations target the same amino acid, which is essential to the structural and functional integrity of the small heat-shock protein alphaA-crystallin. This positively charged residue, when mutated in other small heat-shock proteins, results in various human disorders. Coimmunoprecipitation experiments showed greater binding of both HSPB8 mutants to the interacting partner HSPB1. Expression of mutant HSPB8 in cultured cells promoted formation of intracellular aggregates. Our findings provide further evidence that mutations in heat-shock proteins have an important role in neurodegenerative disorders.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号