首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
现状及发展   1篇
综合类   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Making accurate forecasts of the future direction of interest rates is a vital element when making economic decisions. The focus on central banks as they make decisions about the future direction of interest rates requires the forecaster to assess the likely outcome of committee decisions based on new information since the previous meeting. We characterize this process as a dynamic ordered probit process that uses information to decide between three possible outcomes for interest rates: an increase, decrease or no change. When we analyse the predictive ability of two information sets, we find that the approach has predictive ability both in‐sample and out‐of‐sample that helps forecast the direction of future rates. Copyright © 2008 John wiley & Sons, Ltd.  相似文献   
2.
Calorie restriction extends lifespan in organisms ranging from yeast to mammals. In yeast, the SIR2 gene mediates the life-extending effects of calorie restriction. Here we show that the mammalian SIR2 orthologue, Sirt1 (sirtuin 1), activates a critical component of calorie restriction in mammals; that is, fat mobilization in white adipocytes. Upon food withdrawal Sirt1 protein binds to and represses genes controlled by the fat regulator PPAR-gamma (peroxisome proliferator-activated receptor-gamma), including genes mediating fat storage. Sirt1 represses PPAR-gamma by docking with its cofactors NCoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptors). Mobilization of fatty acids from white adipocytes upon fasting is compromised in Sirt1+/- mice. Repression of PPAR-gamma by Sirt1 is also evident in 3T3-L1 adipocytes, where overexpression of Sirt1 attenuates adipogenesis, and RNA interference of Sirt1 enhances it. In differentiated fat cells, upregulation of Sirt1 triggers lipolysis and loss of fat. As a reduction in fat is sufficient to extend murine lifespan, our results provide a possible molecular pathway connecting calorie restriction to life extension in mammals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号