首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
现状及发展   3篇
  2018年   1篇
  2013年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Most living organisms show circadian rhythms in physiology and behavior. These oscillations are generated by endogenous circadian clocks, present in virtually all cells where they control key biological processes. To study peripheral clocks in vivo, we developed an original model, the Rev-Luc mouse to follow noninvasively and longitudinally Rev-Luc oscillations in peripheral clocks using in vivo bioluminescence imaging. We found in vitro and in vivo a robust diurnal rhythm of Rev-Luc, mainly in liver, intestine, kidney and adipose tissues. We further confirmed in vivo that Rev-Luc peripheral tissues are food-entrainable oscillators, not affected by age or sex. These data strongly support the relevance of the Rev-Luc model for circadian studies, especially to investigate in vivo the establishment and the entrainment of the rhythm throughout ontogenesis. We then showed that Rev-Luc expression develops dynamically and gradually, both in amplitude and in phase, during fetal and postnatal development. We also demonstrate for the first time that the immature peripheral circadian system of offspring in utero is mainly entrained by maternal cues from feeding regimen. The prenatal entrainment will also differentially determine the Rev-Luc expression in pups before weaning underlining the importance of the maternal chrononutrition on the circadian system entrainment of the offspring.  相似文献   
2.
3.
The retinal circadian clock is crucial for optimal regulation of retinal physiology and function, yet its cellular location in mammals is still controversial. We used laser microdissection to investigate the circadian profiles and phase relations of clock gene expression and Period gene induction by light in the isolated outer (rods/cones) and inner (inner nuclear and ganglion cell layers) regions in wild-type and melanopsin-knockout (Opn 4 ?/? ) mouse retinas. In the wild-type mouse, all clock genes are rhythmically expressed in the photoreceptor layer but not in the inner retina. For clock genes that are rhythmic in both retinal compartments, the circadian profiles are out of phase. These results are consistent with the view that photoreceptors are a potential site of circadian rhythm generation. In mice lacking melanopsin, we found an unexpected loss of clock gene rhythms and of the photic induction of Per1-Per2 mRNAs only in the outer retina. Since melanopsin ganglion cells are known to provide a feed-back signalling pathway for photic information to dopaminergic cells, we further examined dopamine (DA) synthesis in Opn 4 ?/? mice. The lack of melanopsin prevented the light-dependent increase of tyrosine hydroxylase (TH) mRNA and of DA and, in constant darkness, led to comparatively high levels of both components. These results suggest that melanopsin is required for molecular clock function and DA regulation in the retina, and that Period gene induction by light is mediated by a melanopsin-dependent, DA-driven signal acting on retinal photoreceptors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号