首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
现状及发展   4篇
研究方法   1篇
综合类   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Prokineticins are proteins that regulate diverse biological processes including gastrointestinal motility, angiogenesis, circadian rhythm, and innate immune response. Prokineticins bind two closed related G-protein coupled receptors (GPCRs), PKR1 and PKR2. In general, these receptors act as molecular switches to relay activation to heterotrimeric G-proteins and a growing body of evidence points to the fact that GPCRs exist as homo- or heterodimers. We show here by Western-blot analysis that PKR2 has a dimeric structure in neutrophils. By heterologous expression of PKR2 in Saccharomyces cerevisiae, we examined the mechanisms of intermolecular interaction of PKR2 dimerization. The potential involvement of three types of mechanisms was investigated: coiled-coil, disulfide bridges, and hydrophobic interactions between transmembrane domains. Characterization of differently deleted or site-directed PKR2 mutants suggests that dimerization proceeds through interactions between transmembrane domains. We demonstrate that co-expressing binding-deficient and signaling-deficient forms of PKR2 can re-establish receptor functionality, possibly through a domain-swapping mechanism.  相似文献   
2.
To form an immature HIV-1 capsid, 1,500 HIV-1 Gag (p55) polypeptides must assemble properly along the host cell plasma membrane. Insect cells and many higher eukaryotic cell types support efficient capsid assembly, but yeast and murine cells do not, indicating that host machinery is required for immature HIV-1 capsid formation. Additionally, in a cell-free system that reconstitutes HIV-1 capsid formation, post-translational assembly events require ATP and a subcellular fraction, suggesting a requirement for a cellular ATP-binding protein. Here we identify such a protein (HP68), described previously as an RNase L inhibitor, and demonstrate that it associates post-translationally with HIV-1 Gag in a cell-free system and human T cells infected with HIV-1. Using a dominant negative mutant of HP68 in mammalian cells and depletion-reconstitution experiments in the cell-free system, we demonstrate that HP68 is essential for post-translational events in immature HIV-1 capsid assembly. Furthermore, in cells the HP68-Gag complex is associated with HIV-1 Vif, which is involved in virion morphogenesis and infectivity. These findings support a critical role for HP68 in post-translational events of HIV-1 assembly and reveal a previously unappreciated dimension of host-viral interaction.  相似文献   
3.
4.
5.
We are in the midst of unparalleled epidemics of obesity and type 2 diabetes—complex phenotypes originating at the intersection of genetic and environmental risk. As detailed in other chapters, evidence indicates that non-genetic, or environmental, risk may initiate during prenatal and early postnatal life [1]. Striking examples in humans include the association of low birth weight (LBW) and/or accelerated early growth with increased risk of insulin resistance, obesity, type 2 diabetes (T2DM), and cardiovascular disease (CVD), and the close relationship between maternal obesity or diabetes with childhood obesity. In this chapter, we will focus on the intriguing emerging data from both human and animal models that indicate that intrauterine and childhood exposures can also influence risk for diabetes and cardiovascular disease in subsequent generations. Understanding the mechanisms responsible for these effects is critical in order to develop effective metabolic and nutritional interventions to interrupt such vicious intergenerational cycles potentiating risk for metabolic disorders.  相似文献   
6.
Familial idiopathic basal ganglia calcification (IBGC) is a genetic condition with a wide spectrum of neuropsychiatric symptoms, including parkinsonism and dementia. Here, we identified mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), in IBGC-affected families of varied ancestry, and we observed significantly impaired phosphate transport activity for all assayed PiT2 mutants in Xenopus laevis oocytes. Our results implicate altered phosphate homeostasis in the etiology of IBGC.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号