首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
现状及发展   1篇
综合类   2篇
  2002年   1篇
  2000年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Our understanding of how immune responses are generated and regulated drives the design of possible immunotherapies for cancer patients. For that reason, we first describe briefly the actual immunological theories and their common perspectives about cancer vaccine development. Second, we describe cancer vaccines that are able to induce tumor-specific immune responses in cancer patients. However, these responses are not always followed by tumor rejection. At the end of the review, we discuss two possible reasons that might explain this dichotomy of cancer immunology. First, the immune response generated, although detectable, may not be quantitatively sufficient to reject the tumor. Second, the tumor microenvironment may modulate tumor cell susceptibility to the systemic immune response induced by the immunization. Finally, we discuss what, in our opinion, might be the best way to improve cancer vaccine strategies and how the relationship between the tumor and its surroundings might be studied in more details. Received 21 June 2001; received after revision 15 August 2001; accepted 15 August 2001  相似文献   
2.
Colloidal suspensions that form periodic self-assembling structures on sub-micrometre scales are of potential technological interest; for example, three-dimensional arrangements of spheres in colloidal crystals might serve as photonic materials, intended to manipulate light. Colloidal particles with non-spherical shapes (such as rods and plates) are of particular interest because of their ability to form liquid crystals. Nematic liquid crystals possess orientational order; smectic and columnar liquid crystals additionally exhibit positional order (in one or two dimensions respectively). However, such positional ordering may be inhibited in polydisperse colloidal suspensions. Here we describe a suspension of plate-like colloids that shows isotropic, nematic and columnar phases on increasing the particle concentration. We find that the columnar two-dimensional crystal persists for a polydispersity of up to 25%, with a cross-over to smectic-like ordering at very high particle concentrations. Our results imply that liquid crystalline order in synthetic mesoscopic materials may be easier to achieve than previously thought.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号