首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
现状及发展   7篇
综合类   4篇
  2016年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1971年   2篇
  1966年   2篇
排序方式: 共有11条查询结果,搜索用时 125 毫秒
1.
During recent years our view of adipose tissue has been revolutionized. White adipose tissue (WAT) is no longer seen as mere energy store or provider of thermal and mechanical insulation. Neglect of WAT has been overcome by surprising discoveries in recent years, changing the view of this tissue towards a highly endocrine organ that is involved in a wide variety of physiological and pathophysiological processes. In this brief article we will focus on new developments in adipocyte and WAT biology. The appreciation of WAT as an endocrine organ will provide the basis for new and promising perspectives in the management of obesity and obesity-related diseases including diabetes, mellitus type II and arterial hypertension.  相似文献   
2.
Zusammenfassung Nach zweistündiger Inkubation von Tumorzellen mit schwerem Wasser nimmt die zytophotometrisch gemessene Feulgenreaktivität ab, während die Gallocyaninchromalaunfärbung, die auf Phosphatgruppen beruht, erhalten bleibt. Auch nach der D2O-Behandlung blieben die Tumoren transplantabel.  相似文献   
3.
4.
Materials in which magnetic and electric order coexist--termed 'multiferroics' or 'magnetoelectrics'--have recently become the focus of much research. In particular, the simultaneous occurrence of ferromagnetism and ferroelectricity, combined with an intimate coupling of magnetization and polarization via magnetocapacitive effects, holds promise for new generations of electronic devices. Here we present measurements on a simple cubic spinel compound with unusual, and potentially useful, magnetic and electric properties: it shows ferromagnetic order coexisting with relaxor ferroelectricity (a ferroelectric cluster state with a smeared-out phase transition), both having sizable ordering temperatures and moments. Close to the ferromagnetic ordering temperature, the magnetocapacitive coupling (characterized by a variation of the dielectric constant in an external magnetic field) reaches colossal values, approaching 500 per cent. We attribute the relaxor properties to geometric frustration, which is well known for magnetic moments but here is found to impede long-range order of the structural degrees of freedom that drive the formation of the ferroelectric state.  相似文献   
5.
R J Haschen  K Krug 《Nature》1966,209(5022):511-512
  相似文献   
6.
Ye Q  Krug RM  Tao YJ 《Nature》2006,444(7122):1078-1082
Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication. Here we report a 3.2 A crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein. Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighbouring molecule. This flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.  相似文献   
7.
Sealing of the paracellular cleft by tight junctions is of central importance for epithelia and endothelia to function as efficient barriers between the extracellular space and the inner milieu. Occludin and claudins represent the major tight junction components involved in establishing this barrier function. A special situation emerges at sites where three cells join together. Tricellulin, a recently identified tetraspan protein concentrated at tricellular contacts, was reported to organize tricellular as well as bicellular tight junctions. Here we show that in MDCK cells, the tricellulin C-terminus is important for the basolateral translocation of tricellulin, whereas the N-terminal domain appears to be involved in directing tricellulin to tricellular contacts. In this respect, identification of homomeric tricellulin-tricellulin and of heteromeric tricellulin-occludin complexes extends a previously published model and suggests that tricellulin and occludin are transported together to the edges of elongating bicellular junctions and get separated when tricellular contacts are formed.  相似文献   
8.
Zusammenfassung Karyologische und zytophotometrische Untersuchungen an PHA-stimulierten menschlichen Lymphozyten ergaben nach 76 h im DNS-Karyogramm einen weiteren Gipfel zwischen diploiden und tetraploiden Werten. Daraus wird geschlossen, dass bei Lymphozyten in der Kultur die DNS-Synthese in der S-Phase diskontinuierlich verläuft.  相似文献   
9.
Barrier properties of tight junctions are determined by the claudin protein family. Many claudins seal this barrier, but others form paracellular channels. Among these, no claudins with general and clear-cut anion selectivity have yet been described, while for claudin-10a and claudin-4, only circumstantial or small anion selectivities have been shown. A claudin with unknown function and tissue distribution is claudin-17. We characterized claudin-17 by overexpression and knock-down in two renal cell lines. Overexpression in MDCK C7 cell layers caused a threefold increase in paracellular anion permeability and switched these cells from cation- to anion-selective. Knockdown in LLC-PK(1) cells indorsed the finding of claudin-17-based anion channels. Mutagenesis revealed that claudin-17 anion selectivity critically depends on a positive charge at position 65. Claudin-17 expression was found in two organs: marginal in brain but abundant in kidney, where expression was intense in proximal tubules and gradually decreased towards distal segments. As claudin-17 is predominantly expressed in proximal nephrons, which exhibit substantial, though molecularly not defined, paracellular chloride reabsorption, we suggest that claudin-17 has a unique physiological function in this process. In conclusion, claudin-17 forms channels within tight junctions with distinct anion preference.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号