首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
现状及发展   6篇
研究方法   2篇
综合类   6篇
  2018年   1篇
  2016年   1篇
  2010年   2篇
  2007年   2篇
  2006年   1篇
  2002年   3篇
  1986年   2篇
  1985年   1篇
  1975年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The most abundant inhibitory neurotransmitter in the central nervous system, gamma-aminobutyric acid (GABA), exerts its main effects via a GABAA receptor that gates a chloride channel in the subsynaptic membrane. These receptors can contain a modulatory unit, the benzodiazepine receptor, through which ligands of different chemical classes can increase or decrease GABAA receptor function. We have now visualized a GABAA receptor in mammalian brain using monoclonal antibodies. The protein complex recognized by the antibodies contained high- and low-affinity binding sites for GABA as well as binding sites for benzodiazepines, indicative of a GABAA receptor functionally associated with benzodiazepine receptors. As the pattern of brain immunoreactivity corresponds to the autoradiographical distribution of benzodiazepine binding sites, most benzodiazepine receptors seem to be part of GABAA receptors. Two constituent proteins were identified immunologically. Because the monoclonal antibodies cross-react with human brain, they provide a means for elucidating those CNS disorders which may be linked to a dysfunction of a GABAA receptor.  相似文献   
2.
RIM1alpha is required for presynaptic long-term potentiation.   总被引:8,自引:0,他引:8  
Two main forms of long-term potentiation (LTP)-a prominent model for the cellular mechanism of learning and memory-have been distinguished in the mammalian brain. One requires activation of postsynaptic NMDA (N-methyl d-aspartate) receptors, whereas the other, called mossy fibre LTP, has a principal presynaptic component. Mossy fibre LTP is expressed in hippocampal mossy fibre synapses, cerebellar parallel fibre synapses and corticothalamic synapses, where it apparently operates by a mechanism that requires activation of protein kinase A. Thus, presynaptic substrates of protein kinase A are probably essential in mediating this form of long-term synaptic plasticity. Studies of knockout mice have shown that the synaptic vesicle protein Rab3A is required for mossy fibre LTP, but the protein kinase A substrates rabphilin, synapsin I and synapsin II are dispensable. Here we report that mossy fibre LTP in the hippocampus and the cerebellum is abolished in mice lacking RIM1alpha, an active zone protein that binds to Rab3A and that is also a protein kinase A substrate. Our results indicate that the long-term increase in neurotransmitter release during mossy fibre LTP may be mediated by a unitary mechanism that involves the GTP-dependent interaction of Rab3A with RIM1alpha at the interface of synaptic vesicles and the active zone.  相似文献   
3.
Summary Newborn lizard (Anolis lineatopus) individuals differ clearly by their acceptance of 5 different prey items; there are 7 etho-types of differential acceptance which after 5 weeks of feeding have become reduced to only 3.  相似文献   
4.
5.
Physical exercise induces cell proliferation in the adult hippocampus in rodents. Serotonin (5-HT) and angiotensin (Ang) II are important mediators of the pro-mitotic effect of physical activity. Here, we examine precursor cells in the adult brain of mice lacking angiotensin-converting enzyme (ACE) 2, and explore the effect of an acute running stimulus on neurogenesis. ACE2 metabolizes Ang II to Ang-(1–7) and is essential for the intestinal uptake of tryptophan (Trp), the 5-HT precursor. In ACE2-deficient mice, we observed a decrease in brain 5-HT levels and no increase in the number of BrdU-positive cells following exercise. Targeting the Ang II/AT1 axis by blocking the receptor, or experimentally increasing Trp/5-HT levels in the brain of ACE2-deficient mice, did not rescue the running-induced effect. Furthermore, mice lacking the Ang-(1–7) receptor, Mas, presented a normal neurogenic response to exercise. Our results identify ACE2 as a novel factor required for exercise-dependent modulation of adult neurogenesis and essential for 5-HT metabolism.  相似文献   
6.
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca2(+)-permeable cation channels which are blocked by extracellular Mg2(+) in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2A(N615K) (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg2(+) block and a decrease in Ca2(+) permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected.  相似文献   
7.
Neurotransmitters are released by synaptic vesicle fusion at the active zone. The active zone of a synapse mediates Ca2+-triggered neurotransmitter release, and integrates presynaptic signals in regulating this release. Much is known about the structure of active zones and synaptic vesicles, but the functional relation between their components is poorly understood. Here we show that RIM1alpha, an active zone protein that was identified as a putative effector for the synaptic vesicle protein Rab3A, interacts with several active zone molecules, including Munc13-1 (ref. 6) and alpha-liprins, to form a protein scaffold in the presynaptic nerve terminal. Abolishing the expression of RIM1alpha in mice shows that RIM1alpha is essential for maintaining normal probability of neurotransmitter release, and for regulating release during short-term synaptic plasticity. These data indicate that RIM1alpha has a central function in integrating active zone proteins and synaptic vesicles into a molecular scaffold that controls neurotransmitter release.  相似文献   
8.
Benzodiazepine receptors resolved   总被引:1,自引:0,他引:1  
To date, attempts to map the distribution and density of benzodiazepine receptors in the CNS have been dominated by radiohistochemical techniques with conventional receptor binding. Their limited resolution, however, prompted us to try an immunohistochemical approach. Purified GABA/benzodiazepine receptors, prepared from bovine cerebral cortex, have been used to raise monoclonal antibodies for this purpose. Immunoreactive sites in rat brain, spinal cord and retina as well as in bovine and post-mortem human brain were found to be concentrated on neuronal cell bodies and processes in those regions known to be innervated by GABAergic neurons. Electron microscopic analysis revealed a selective staining of axosomatic and axodendritic pre- and postsynaptic contacts.  相似文献   
9.
The 1918 influenza pandemic was unusually severe, resulting in about 50 million deaths worldwide. The 1918 virus is also highly pathogenic in mice, and studies have identified a multigenic origin of this virulent phenotype in mice. However, these initial characterizations of the 1918 virus did not address the question of its pathogenic potential in primates. Here we demonstrate that the 1918 virus caused a highly pathogenic respiratory infection in a cynomolgus macaque model that culminated in acute respiratory distress and a fatal outcome. Furthermore, infected animals mounted an immune response, characterized by dysregulation of the antiviral response, that was insufficient for protection, indicating that atypical host innate immune responses may contribute to lethality. The ability of influenza viruses to modulate host immune responses, such as that demonstrated for the avian H5N1 influenza viruses, may be a feature shared by the virulent influenza viruses.  相似文献   
10.
Schimke immuno-osseous dysplasia (SIOD, MIM 242900) is an autosomal-recessive pleiotropic disorder with the diagnostic features of spondyloepiphyseal dysplasia, renal dysfunction and T-cell immunodeficiency. Using genome-wide linkage mapping and a positional candidate approach, we determined that mutations in SMARCAL1 (SWI/SNF2-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), are responsible for SIOD. Through analysis of data from persons with SIOD in 26 unrelated families, we observed that affected individuals from 13 of 23 families with severe disease had two alleles with nonsense, frameshift or splicing mutations, whereas affected individuals from 3 of 3 families with milder disease had a missense mutation on each allele. These observations indicate that some missense mutations allow retention of partial SMARCAL1 function and thus cause milder disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号